Abstract
Abstract
Background
With the emergence of photon-counting CT, ultrahigh-resolution (UHR) imaging can be performed without dose penalty. This study aims to directly compare the image quality of UHR and standard resolution (SR) scan mode in femoral artery angiographies.
Methods
After establishing continuous extracorporeal perfusion in four fresh-frozen cadaveric specimens, photon-counting CT angiographies were performed with a radiation dose of 5 mGy and tube voltage of 120 kV in both SR and UHR mode. Images were reconstructed with dedicated convolution kernels (soft: Body-vascular (Bv)48; sharp: Bv60; ultrasharp: Bv76). Six radiologists evaluated the image quality by means of a pairwise forced-choice comparison tool. Kendall’s concordance coefficient (W) was calculated to quantify interrater agreement. Image quality was further assessed by measuring intraluminal attenuation and image noise as well as by calculating signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNR).
Results
UHR yielded lower noise than SR for identical reconstructions with kernels ≥ Bv60 (p < 0.001). UHR scans exhibited lower intraluminal attenuation compared to SR (Bv60: 406.4 ± 25.1 versus 418.1 ± 30.1 HU; p < 0.001). Irrespective of scan mode, SNR and CNR decreased while noise increased with sharper kernels but UHR scans were objectively superior to SR nonetheless (Bv60: SNR 25.9 ± 6.4 versus 20.9 ± 5.3; CNR 22.7 ± 5.8 versus 18.4 ± 4.8; p < 0.001). Notably, UHR scans were preferred in subjective assessment when images were reconstructed with the ultrasharp Bv76 kernel, whereas SR was rated superior for Bv60. Interrater agreement was high (W = 0.935).
Conclusions
Combinations of UHR scan mode and ultrasharp convolution kernel are able to exploit the full image quality potential in photon-counting CT angiography of the femoral arteries.
Relevance statement
The UHR scan mode offers improved image quality and may increase diagnostic accuracy in CT angiography of the peripheral arterial runoff when optimized reconstruction parameters are chosen.
Key points
• UHR photon-counting CT improves image quality in combination with ultrasharp convolution kernels.
• UHR datasets display lower image noise compared with identically reconstructed standard resolution scans.
• Scans in UHR mode show decreased intraluminal attenuation compared with standard resolution imaging.
Graphical Abstract
Funder
Interdisziplinäres Zentrum für Klinische Forschung, Universitätsklinikum Würzburg
Siemens Healthineers
Deutsche Forschungsgemeinschaft
Julius-Maximilians-Universität Würzburg
Universitätsklinikum Würzburg
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献