Abstract
Abstract
Background
Dual-energy computed tomography has shown a great interest for musculoskeletal pathologies. Photon-counting spectral computed tomography (PCSCT) can acquire data in multiple energy bins with the potential to increase contrast, especially for soft tissues. Our objectives were to assess the value of PCSST to characterise cartilage and to extract quantitative measures of subchondral bone integrity.
Methods
Seven excised human knees (3 males and 4 females; 4 normal and 3 with osteoarthritis; age 80.6 ± 14 years, mean ± standard deviation) were scanned using a clinical PCSCT prototype scanner. Tomographic image reconstruction was performed after Compton/photoelectric decomposition. Virtual monoenergetic images were generated from 40 keV to 110 keV every 10 keV (cubic voxel size 250 × 250 × 250 μm3). After selecting an optimal virtual monoenergetic image, we analysed the grey level histograms of different tissues and extracted quantitative measurements on bone cysts.
Results
The optimal monoenergetic images were obtained for 60 keV and 70 keV. Visual inspection revealed that these images provide sufficient spatial resolution and soft-tissue contrast to characterise surfaces, disruption, calcification of cartilage, bone osteophytes, and bone cysts. Analysis of attenuation versus energy revealed different energy fingerprint according to tissues. The volumes and numbers of bone cyst were quantified.
Conclusions
Virtual monoenergetic images may provide direct visualisation of both cartilage and bone details. Thus, unenhanced PCSCT appears to be a new modality for characterising the knee joint with the potential to increase the diagnostic capability of computed tomography for joint diseases and osteoarthritis.
Funder
ANR
Labex Primes
H2020 Marie Skłodowska-Curie Actions
Horizon 2020 Framework Programme
ANR-FLI
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference37 articles.
1. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707. https://doi.org/10.1002/art.34453 Epub 2012 Mar 5
2. Thysen S, Luyten FP, Lories RJU (2015) Targets, models and challenges in osteoarthritis research. Dis Model Mech 8:17–30. https://doi.org/10.1242/dmm.016881
3. Berenbaum F (2010) Targeted therapies in osteoarthritis: a systematic review of the trials on www.clinicaltrials.gov. Best Pract Res Clin Rheumatol 24:107–119. https://doi.org/10.1016/j.berh.2009.08.007
4. Magarelli N, Amelia R, Melillo N, Nasuto M, Cantatore F, Guglielmi G (2012) Imaging of chondrocalcinosis: calcium pyrophosphate dihydrate (CPPD) crystal deposition disease -- imaging of common sites of involvement. Clin Exp Rheumatol 30:118–125
5. Burnett WD, Kontulainen SA, McLennan CE et al (2019) Knee osteoarthritis patients with more subchondral cysts have altered tibial subchondral bone mineral density. BMC Musculoskelet Disord 20:14. https://doi.org/10.1186/s12891-018-2388-9
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献