AI-assisted accelerated MRI of the ankle: clinical practice assessment

Author:

Zhao Qiang,Xu Jiajia,Yang Yu Xin,Yu Dan,Zhao Yuqing,Wang Qizheng,Yuan Huishu

Abstract

Abstract Background High-spatial resolution magnetic resonance imaging (MRI) is essential for imaging ankle joints. However, the clinical application of fast spin-echo sequences remains limited by their lengthy acquisition time. Artificial intelligence-assisted compressed sensing (ACS) technology has been recently introduced as an integrative acceleration solution. We compared ACS-accelerated 3-T ankle MRI to conventional methods of compressed sensing (CS) and parallel imaging (PI) . Methods We prospectively included 2 healthy volunteers and 105 patients with ankle pain. ACS acceleration factors for ankle protocol of T1-, T2-, and proton density (PD)-weighted sequences were optimized in a pilot study on healthy volunteers (acceleration factor 3.2–3.3×). Images of patients acquired using ACS and conventional acceleration methods were compared in terms of acquisition times, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), subjective image quality, and diagnostic agreement. Shapiro-Wilk test, Cohen κ, intraclass correlation coefficient, and one-way ANOVA with post hoc tests (Tukey or Dunn) were used. Results ACS acceleration reduced the acquisition times of T1-, T2-, and PD-weighted sequences by 32−43%, compared with conventional CS and PI, while maintaining image quality (mostly higher SNR with p < 0.004 and higher CNR with p < 0.047). The diagnostic agreement between ACS and conventional sequences was rated excellent (κ = 1.00). Conclusions The optimum ACS acceleration factors for ankle MRI were found to be 3.2–3.3× protocol. The ACS allows faster imaging, yielding similar image quality and diagnostic performance. Relevance statement AI-assisted compressed sensing significantly accelerates ankle MRI times while preserving image quality and diagnostic precision, potentially expediting patient diagnoses and improving clinical workflows. Key points • AI-assisted compressed sensing (ACS) significantly reduced scan duration for ankle MRI. • Similar image quality achieved by ACS compared to conventional acceleration methods. • A high agreement by three acceleration methods in the diagnosis of ankle lesions was observed. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3