Metal artifact reduction on musculoskeletal CT: a phantom and clinical study

Author:

Midthun Petter,Kirkhus Eva,Østerås Bjørn Helge,Høiness Per Reidar,England Andrew,Johansen SaforaORCID

Abstract

Abstract Background Artifacts caused by metal implants are challenging when undertaking computed tomography (CT). Dedicated algorithms have shown promising results although with limitations. Tin filtration (Sn) in combination with high tube voltage also shows promise but with limitations. There is a need to examine these limitations in more detail. The purpose of this study was to investigate the impact of different metal artefact reduction (MAR) algorithms, tin filtration, and ultra-high-resolution (UHR) scanning, alone or in different combinations in both phantom and clinical settings. Methods An ethically approved clinical and phantom study was conducted. A modified Catphan® phantom with titanium and stainless-steel inserts was scanned with six different MAR protocols with tube voltage ranging from 80 to 150 kVp. Other scan parameters were kept identical. The differences (∆) in mean HU and standard deviation (SD) in images, with and without metal, were measured and compared. In the clinical study, three independent readers performed visual image quality assessments on eight different protocols using retrospectively acquired images. Results Iterative MAR had the lowest ∆HU and ∆SD in the phantom study. For images of the forearm, the soft tissue noise for Sn-based 150-kVp UHR protocol with was significantly higher (p = 0.037) than for single-energy MAR protocols. All Sn-based 150-kVp protocols were rated significantly higher (p < 0.046 than the single-energy MAR protocols in the visual assessment. Conclusions All Sn-based 150-kVp UHR protocols showed similar objective MAR in the phantom study, and higher objective MAR and significantly improved visual image quality than single-energy MAR. Relevance statement Images with less metal artifacts and higher visual image quality may be more clinically optimal in CT examination of musculoskeletal patients with metal implants. Key points • Metal artifact reduction algorithms and Sn filter combined with high kVp reduce artifacts. • Metal artifact reduction algorithms introduce new artifacts in certain metals. • Sn-based protocols alone may be considered as low metal artifact protocols. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3