Digital subtraction of temporally sequential mammograms for improved detection and classification of microcalcifications

Author:

Loizidou KosmiaORCID,Skouroumouni Galateia,Pitris Costas,Nikolaou Christos

Abstract

Abstract Background Our aim was to demonstrate that automated detection and classification of breast microcalcifications, according to Breast Imaging Reporting and Data System (BI-RADS) categorisation, can be improved with the subtraction of sequential mammograms as opposed to using the most recent image only. Methods One hundred pairs of mammograms were retrospectively collected from two temporally sequential rounds. Fifty percent of the images included no (BI-RADS 1) or benign (BI-RADS 2) microcalcifications. The remaining exhibited suspicious findings (BI-RADS 4-5) in the recent image. Mammograms cannot be directly subtracted, due to tissue changes over time and breast deformation during mammography. To overcome this challenge, optimised preprocessing, image registration, and postprocessing procedures were developed. Machine learning techniques were employed to eliminate false positives (normal tissue misclassified as microcalcifications) and to classify the true microcalcifications as BI-RADS benign or suspicious. Ninety-six features were extracted and nine classifiers were evaluated with and without temporal subtraction. The performance was assessed by measuring sensitivity, specificity, accuracy, and area under the curve (AUC) at receiver operator characteristics analysis. Results Using temporal subtraction, the contrast ratio improved ~ 57 times compared to the most recent mammograms, enhancing the detection of the radiologic changes. Classifying as BI-RADS benign versus suspicious microcalcifications, resulted in 90.3% accuracy and 0.87 AUC, compared to 82.7% and 0.81 using just the most recent mammogram (p = 0.003). Conclusion Compared to using the most recent mammogram alone, temporal subtraction is more effective in the microcalcifications detection and classification and may play a role in automated diagnosis systems.

Funder

H2020 Spreading Excellence and Widening Participation

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3