A machine learning approach for differentiating malignant from benign enhancing foci on breast MRI

Author:

D’Amico Natascha C.ORCID,Grossi Enzo,Valbusa Giovanni,Rigiroli Francesca,Colombo Bernardo,Buscema Massimo,Fazzini Deborah,Ali Marco,Malasevschi Ala,Cornalba Gianpaolo,Papa Sergio

Abstract

Abstract Background Differentiate malignant from benign enhancing foci on breast magnetic resonance imaging (MRI) through radiomic signature. Methods Forty-five enhancing foci in 45 patients were included in this retrospective study, with needle biopsy or imaging follow-up serving as a reference standard. There were 12 malignant and 33 benign lesions. Eight benign lesions confirmed by over 5-year negative follow-up and 15 malignant histopathologically confirmed lesions were added to the dataset to provide reference cases to the machine learning analysis. All MRI examinations were performed with a 1.5-T scanner. One three-dimensional T1-weighted unenhanced sequence was acquired, followed by four dynamic sequences after intravenous injection of 0.1 mmol/kg of gadobenate dimeglumine. Enhancing foci were segmented by an expert breast radiologist, over 200 radiomic features were extracted, and an evolutionary machine learning method (“training with input selection and testing”) was applied. For each classifier, sensitivity, specificity and accuracy were calculated as point estimates and 95% confidence intervals (CIs). Results A k-nearest neighbour classifier based on 35 selected features was identified as the best performing machine learning approach. Considering both the 45 enhancing foci and the 23 additional cases, this classifier showed a sensitivity of 27/27 (100%, 95% CI 87–100%), a specificity of 37/41 (90%, 95% CI 77–97%), and an accuracy of 64/68 (94%, 95% CI 86–98%). Conclusion This preliminary study showed the feasibility of a radiomic approach for the characterisation of enhancing foci on breast MRI.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3