Inferring FDG-PET-positivity of lymph node metastases in proven lung cancer from contrast-enhanced CT using radiomics and machine learning

Author:

Gorodetski Boris,Becker Philipp Hendrik,Baur Alexander Daniel Jacques,Hartenstein Alexander,Rogasch Julian Manuel Michael,Furth Christian,Amthauer Holger,Hamm Bernd,Makowski Marcus,Penzkofer TobiasORCID

Abstract

Abstract Background We evaluated the role of radiomics applied to contrast-enhanced computed tomography (CT) in the detection of lymph node (LN) metastases in patients with known lung cancer compared to 18F-fluorodeoxyglucose positron emission tomography (PET)/CT as a reference. Methods This retrospective analysis included 381 patients with 1,799 lymph nodes (450 malignant, 1,349 negative). The data set was divided into a training and validation set. A radiomics analysis with 4 filters and 6 algorithms resulting in 24 different radiomics signatures and a bootstrap algorithm (Bagging) with 30 bootstrap iterations was performed. A decision curve analysis was applied to generate a net benefit to compare the radiomics signature to two expert radiologists as one-by-one and as a prescreening tool in combination with the respective radiologist and only the radiologists. Results All 24 modeling methods showed good and reliable discrimination for malignant/benign LNs (area under the curve 0.75−0.87). The decision curve analysis showed a net benefit for the least absolute shrinkage and selection operator (LASSO) classifier for the entire probability range and outperformed the expert radiologists except for the high probability range. Using the radiomics signature as a prescreening tool for the radiologists did not improve net benefit. Conclusions Radiomics showed good discrimination power irrespective of the modeling technique in detecting LN metastases in patients with known lung cancer. The LASSO classifier was a suitable diagnostic tool and even outperformed the expert radiologists, except for high probabilities. Radiomics failed to improve clinical benefit as a prescreening tool.

Funder

Berlin Institute of Health

Charité - Universitätsmedizin Berlin

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence approaches for risk stratification of diabetic kidney disease;Internet of Things and Machine Learning for Type I and Type II Diabetes;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3