Denoising diffusion-based MRI to CT image translation enables automated spinal segmentation

Author:

Graf RobertORCID,Schmitt Joachim,Schlaeger Sarah,Möller Hendrik Kristian,Sideri-Lampretsa Vasiliki,Sekuboyina Anjany,Krieg Sandro Manuel,Wiestler Benedikt,Menze Bjoern,Rueckert Daniel,Kirschke Jan Stefan

Abstract

Abstract Background Automated segmentation of spinal magnetic resonance imaging (MRI) plays a vital role both scientifically and clinically. However, accurately delineating posterior spine structures is challenging. Methods This retrospective study, approved by the ethical committee, involved translating T1-weighted and T2-weighted images into computed tomography (CT) images in a total of 263 pairs of CT/MR series. Landmark-based registration was performed to align image pairs. We compared two-dimensional (2D) paired — Pix2Pix, denoising diffusion implicit models (DDIM) image mode, DDIM noise mode — and unpaired (SynDiff, contrastive unpaired translation) image-to-image translation using “peak signal-to-noise ratio” as quality measure. A publicly available segmentation network segmented the synthesized CT datasets, and Dice similarity coefficients (DSC) were evaluated on in-house test sets and the “MRSpineSeg Challenge” volumes. The 2D findings were extended to three-dimensional (3D) Pix2Pix and DDIM. Results 2D paired methods and SynDiff exhibited similar translation performance and DCS on paired data. DDIM image mode achieved the highest image quality. SynDiff, Pix2Pix, and DDIM image mode demonstrated similar DSC (0.77). For craniocaudal axis rotations, at least two landmarks per vertebra were required for registration. The 3D translation outperformed the 2D approach, resulting in improved DSC (0.80) and anatomically accurate segmentations with higher spatial resolution than that of the original MRI series. Conclusions Two landmarks per vertebra registration enabled paired image-to-image translation from MRI to CT and outperformed all unpaired approaches. The 3D techniques provided anatomically correct segmentations, avoiding underprediction of small structures like the spinous process. Relevance statement This study addresses the unresolved issue of translating spinal MRI to CT, making CT-based tools usable for MRI data. It generates whole spine segmentation, previously unavailable in MRI, a prerequisite for biomechanical modeling and feature extraction for clinical applications. Key points • Unpaired image translation lacks in converting spine MRI to CT effectively. • Paired translation needs registration with two landmarks per vertebra at least. • Paired image-to-image enables segmentation transfer to other domains. • 3D translation enables super resolution from MRI to CT. • 3D translation prevents underprediction of small structures. Graphical Abstract

Funder

Horizon 2020 Framework Programme

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3