Abstract
Abstract
Background
Placenta accreta spectrum (PAS) is a rare, life-threatening complication of pregnancy. Predicting PAS severity is critical to individualise care planning for the birth. We aim to explore whether radiomic analysis of T2-weighted magnetic resonance imaging (MRI) can predict severe cases by distinguishing between histopathological subtypes antenatally.
Methods
This was a bi-centre retrospective analysis of a prospective cohort study conducted between 2018 and 2022. Women who underwent MRI during pregnancy and had histological confirmation of PAS were included. Radiomic features were extracted from T2-weighted images. Univariate regression and multivariate analyses were performed to build predictive models to differentiate between non-invasive (International Federation of Gynecology and Obstetrics [FIGO] grade 1 or 2) and invasive (FIGO grade 3) PAS using R software. Prediction performance was assessed based on several metrics including sensitivity, specificity, accuracy and area under the curve (AUC) at receiver operating characteristic analysis.
Results
Forty-one women met the inclusion criteria. At univariate analysis, 0.64 sensitivity (95% confidence interval [CI] 0.0−1.00), specificity 0.93 (0.38−1.0), 0.58 accuracy (0.37−0.78) and 0.77 AUC (0.56−.097) was achieved for predicting severe FIGO grade 3 PAS. Using a multivariate approach, a support vector machine model yielded 0.30 sensitivity (95% CI 0.18−1.0]), 0.74 specificity (0.38−1.00), 0.58 accuracy (0.40−0.82), and 0.53 AUC (0.40−0.85).
Conclusion
Our results demonstrate a predictive potential of this machine learning pipeline for classifying severe PAS cases.
Relevance statement
This study demonstrates the potential use of radiomics from MR images to identify severe cases of placenta accreta spectrum antenatally.
Key points
• Identifying severe cases of placenta accreta spectrum from imaging is challenging.
• We present a methodological approach for radiomics-based prediction of placenta accreta.
• We report certain radiomic features are able to predict severe PAS subtypes.
• Identifying severe PAS subtypes ensures safe and individualised care planning for birth.
Graphical Abstract
Funder
Medical Fund from National Maternity Hospital, Dublin, Ireland
Science Foundation Ireland, co-funded under European Regional Development Fund
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献