Abstract
AbstractThe Monro-Kellie hypothesis (MKH) states that volume changes in any intracranial component (blood, brain tissue, cerebrospinal fluid) should be counterbalanced by a co-occurring opposite change to maintain intracranial pressure within the fixed volume of the cranium. In this feasibility study, we investigate the MKH application to structural magnetic resonance imaging (MRI) in observing compensating intracranial volume changes during hypercapnia, which causes an increase in cerebral blood volume. Seven healthy subjects aged from 24 to 64 years (median 32), 4 males and 3 females, underwent a 3-T three-dimensional T1-weighted MRI under normocapnia and under hypercapnia. Intracranial tissue volumes were computed. According to the MKH, the significant increase in measured brain parenchymal volume (median 6.0 mL; interquartile range 4.5, 8.5; p = 0.016) during hypercapnia co-occurred with a decrease in intracranial cerebrospinal fluid (median -10.0 mL; interquartile range -13.5, -6.5; p = 0.034). These results convey several implications: (i) blood volume changes either caused by disorders, anaesthesia, or medication can affect outcome of brain volumetric studies; (ii) besides probing tissue displacement, this approach may assess the brain cerebrovascular reactivity. Future studies should explore the use of alternative sequences, such as three-dimensional T2-weighted imaging, for improved quantification of hypercapnia-induced volume changes.
Funder
European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging
Reference26 articles.
1. Yoon S, Zuccarello M, Rapoport R (2012) pCO2 and pH regulation of cerebral blood flow. Front Physiol 3:365. https://doi.org/10.3389/fphys.2012.00365
2. Willie CK, Tzeng YC, Fisher JA, Ainslie PN (2014) Integrative regulation of human brain blood flow. J Physiol 592:841–859. https://doi.org/10.1113/jphysiol.2013.268953
3. Meng L, Gelb AW (2015) Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology 122:196–205. https://doi.org/10.1097/ALN.0000000000000506
4. Burrows G (1846) On disorders of the cerebral circulation and on the connection between affections of the brain and diseases of the heart. Longman, Brown, Green and Longmans, London
5. Wåhlin A, Ambarki K, Hauksson J, Birgander R, Malm J, Eklund A (2012) Phase contrast MRI quantification of pulsatile volumes of brain arteries, veins, and cerebrospinal fluids compartments: repeatability and physiological interactions. J Magn Reson Imaging 35:1055–1062. https://doi.org/10.1002/jmri.23527
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献