Vessel-based CTA-image to spatial anatomy registration using tracked catheter position data: preclinical evaluation of in vivo accuracy

Author:

Tangen Geir Arne,Aadahl Petter,Hernes Toril A. N.,Manstad-Hulaas FrodeORCID

Abstract

Abstract Electromagnetic tracking of endovascular instruments has the potential to substantially decrease radiation exposure of patients and personnel. In this study, we evaluated the in vivo accuracy of a vessel-based method to register preoperative computed tomography angiography (CTA) images to physical coordinates using an electromagnetically tracked guidewire. Centerlines of the aortoiliac arteries were extracted from preoperative CTA acquired from five swine. Intravascular positions were obtained from an electromagnetically tracked guidewire. An iterative-closest-point algorithm registered the position data to the preoperative image centerlines. To evaluate the registration accuracy, a guidewire was placed inside the superior mesenteric, left and right renal arteries under fluoroscopic guidance. Position data was acquired with electromagnetic tracking as the guidewire was pulled into the aorta. The resulting measured positions were compared to the corresponding ostia manually identified in the CTA images after applying the registration. The three-dimensional (3D) Euclidean distances were calculated between each corresponding ostial point, and the root mean square (RMS) was calculated for each registration. The median 3D RMS for all registrations was 4.82 mm, with an interquartile range of 3.53–6.14 mm. A vessel-based registration of CTA images to vascular anatomy is possible with acceptable accuracy and encourages further clinical testing. Relevance statement This study shows that the centerline algorithm can be used to register preoperative CTA images to vascular anatomy, with the potential to further reduce ionizing radiation exposure during vascular procedures. Key Points Preoperative images can be used to guide the procedure without ionizing intraoperative imaging. Preoperative imaging can be the only imaging modality used for guidance of vascular procedures. No need to use external fiducial markers to register/match images and spatial anatomy. Acceptable accuracy can be achieved for navigation in a preclinical setting. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3