Bone Strain Index predicts fragility fracture in osteoporotic women: an artificial intelligence-based study

Author:

Ulivieri Fabio Massimo,Rinaudo Luca,Messina Carmelo,Piodi Luca Petruccio,Capra Davide,Lupi Barbara,Meneguzzo Camilla,Sconfienza Luca Maria,Sardanelli Francesco,Giustina Andrea,Grossi Enzo

Abstract

Abstract Background We applied an artificial intelligence-based model to predict fragility fractures in postmenopausal women, using different dual-energy x-ray absorptiometry (DXA) parameters. Methods One hundred seventy-four postmenopausal women without vertebral fractures (VFs) at baseline (mean age 66.3 ± 9.8) were retrospectively evaluated. Data has been collected from September 2010 to August 2018. All subjects performed a spine x-ray to assess VFs, together with lumbar and femoral DXA for bone mineral density (BMD) and the bone strain index (BSI) evaluation. Follow-up exams were performed after 3.34 ± 1.91 years. Considering the occurrence of new VFs at follow-up, two groups were created: fractured versus not-fractured. We applied an artificial neural network (ANN) analysis with a predictive tool (TWIST system) to select relevant input data from a list of 13 variables including BMD and BSI. A semantic connectivity map was built to analyse the connections among variables within the groups. For group comparisons, an independent-samples t-test was used; variables were expressed as mean ± standard deviation. Results For each patient, we evaluated a total of n = 6 exams. At follow-up, n = 69 (39.6%) women developed a VF. ANNs reached a predictive accuracy of 79.56% within the training testing procedure, with a sensitivity of 80.93% and a specificity of 78.18%. The semantic connectivity map showed that a low BSI at the total femur is connected to the absence of VFs. Conclusion We found a high performance of ANN analysis in predicting the occurrence of VFs. Femoral BSI appears as a useful DXA index to identify patients at lower risk for lumbar VFs.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3