Abstract
AbstractAssessment of image noise is a relevant issue in computed tomography (CT). Noise is routinely measured by the standard deviation of density values (Hounsfield units, HU) within a circular region of interest (ROI). We explored the effect of a spherical volume of interest (VOI) on noise measurements. Forty-nine chronic obstructive pulmonary disease patients underwent CT with clinical protocol (regular dose [RD], volumetric CT dose index [CTDIvol] 3.04 mGy, 64-slice unit), and ultra-low dose (ULD) protocol (median CTDIvol 0.38 mGy, dual-source unit). Noise was measured in 27 1-cm2 ROIs and 27 0.75-cm3 VOIs inside the trachea. Median true noise was 21 HU (range 17-29) for RD-CT and 33 HU (26-39) for ULD-CT. The VOI approach resulted in a lower mean distance between limits of agreement compared to ROI: 5.9 versus 10.0 HU for RD-CT (−40%); 4.7 versus 9.9 HU for ULD-CT (−53%). Mean systematic bias barely changed: −1.6 versus −0.9HU for RD-CT; 0.0 to 0.4HU for ULD-CT. The average measurement time was 6.8 s (ROI) versus 9.7 (VOI), independent of dose level. For chest CT, measuring noise with a VOI-based instead of a ROI-based approach reduces variability by 40-53%, without a relevant effect on systematic bias and measurement time.
Funder
Siemens Healthineers
Koninklijke Nederlandse Akademie van Wetenschappen
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference25 articles.
1. European Commission (2000) European guidelines on quality criteria for CT, available at https://op.europa.eu/s/n8PM, archived at http://web.archive.org/web/20210225144451/https://op.europa.eu/o/opportal-service/download-handler?identifier=d229c9e1-a967-49de-b169-59ee68605f1a&format=pdf&language=en&productionSystem=cellar. Office for Official Publications of the European Communities
2. Messerli M, Ottilinger T, Warschkow R, Leschka S, Alkadhi H, Wildermuth S, Bauer RW (2017) Emphysema quantification and lung volumetry in chest X-ray equivalent ultralow dose CT–intra-individual comparison with standard dose CT. Eur J Radiol 91:1–9. https://doi.org/10.1016/j.ejrad.2017.03.003
3. den Harder AM, de Boer E, Lagerweij SJ, Boomsma MF, Schilham AMR, Willemink MJ, Milles J, Leiner T, Budde RPJ, de Jong PA (2018) Emphysema quantification using chest CT: influence of radiation dose reduction and reconstruction technique. Eur Radiol Exp 2:30. https://doi.org/10.1186/s41747-018-0064-3
4. Martin SP, Gariani J, Feutry G, Adler D, Karenovics W, Becker CD, Montet X (2019) Emphysema quantification using hybrid versus model-based generations of iterative reconstruction: SAFIRE versus ADMIRE. Medicine 98:e14450. https://doi.org/10.1097/MD.0000000000014450
5. Wisselink HJ, Pelgrim GJ, Rook M, van den Berge M, Slump K, Nagaraj Y, van Ooijen P, Oudkerk M, Vliegenthart R (2019) Potential for dose reduction in CT emphysema densitometry with post-scan noise reduction: a phantom study. Br J Radiol 93:20181019. https://doi.org/10.1259/bjr.20181019