Reproducibility of radiomic features in CT images of NSCLC patients: an integrative analysis on the impact of acquisition and reconstruction parameters

Author:

Rinaldi Lisa,De Angelis Simone P.,Raimondi SaraORCID,Rizzo Stefania,Fanciullo Cristiana,Rampinelli Cristiano,Mariani Manuel,Lascialfari Alessandro,Cremonesi Marta,Orecchia Roberto,Origgi Daniela,Botta Francesca

Abstract

Abstract Background We investigated to what extent tube voltage, scanner model, and reconstruction algorithm affect radiomic feature reproducibility in a single-institution retrospective database of computed tomography images of non-small-cell lung cancer patients. Methods This study was approved by the Institutional Review Board (UID 2412). Images of 103 patients were considered, being acquired on either among two scanners, at 100 or 120 kVp. For each patient, images were reconstructed with six iterative blending levels, and 1414 features were extracted from each reconstruction. At univariate analysis, Wilcoxon-Mann-Whitney test was applied to evaluate feature differences within scanners and voltages, whereas the impact of the reconstruction was established with the overall concordance correlation coefficient (OCCC). A multivariable mixed model was also applied to investigate the independent contribution of each acquisition/reconstruction parameter. Univariate and multivariable analyses were combined to analyse feature behaviour. Results Scanner model and voltage did not affect features significantly. The reconstruction blending level showed a significant impact at both univariate analysis (154/1414 features yielding an OCCC < 0.85) and multivariable analysis, with most features (1042/1414) revealing a systematic trend with the blending level (multiple comparisons adjusted p < 0.05). Reproducibility increased in association to image processing with smooth filters, nonetheless specific investigation in relation to clinical endpoints should be performed to ensure that textural information is not removed. Conclusions Combining univariate and multivariable models is allowed to identify features for which corrections may be applied to reduce the trend with the algorithm and increase reproducibility. Subsequent clustering may be applied to eliminate residual redundancy.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3