The Buerger’s rabbit model: a closer step to unravelling thromboangiitis obliterans?

Author:

Li Jia-Long,Kwan Kristine J. S.,Lin Xue-Guang,Wang Jie,Chen Bo,Lu Yi-Jie,Wang Bo,Xie Shi-Shuai,Zhou Jiong,Yu Bo,Deng Ying,Jiang Shuai,Tang Jing-Dong

Abstract

Abstract Objective Thromboangiitis obliterans (TAO) remains clinical challenging due to its rarity and underwhelming management outcomes. This study aimed to describe a novel TAO rabbit model that demonstrates a closer resemblance to TAO. Methods Thirty-six New Zealand rabbits underwent the surgical implantation of calibrated gelatin sponge particles (CGSPs) into their right femoral artery. The CGSPs were soaked in different solutions to simulate different types of thrombi: normal (NT; normal saline); inflammatory TAO thrombus (TAO; dimethylsulfoxide [DMSO]), and DMSO with methotrexate (MTX). All groups underwent clinical assessment, digital subtraction angiography (DSA) and histopathological analysis at time points day 0 (immediate), week 1 (acute), week 2 (subacute), and week 4 (chronic). Results The TAO rabbit presented with signs of ischemia of the right digit at week 4. On DSA, the TAO rabbits exhibited formation of corkscrew collaterals starting week 1. On H&E staining, gradual CGSP degradation was observed along with increased red blood cell aggregation and inflammatory cells migration in week 1. On week 2, disorganization of the tunica media layer and vascular smooth muscle cell (VSMC) proliferation was observed. In the TAO rabbit, migrated VSMCs, inflammatory cells, and extracellular matrix with collagen-like substances gradually occluded the lumen. On week 4, the arterial lumen of the TAO rabbit was filled with relatively-organized VSMC and endothelial cell clusters with less inflammatory cells. Neorevascularization was found in the MTX-treated group. Conclusion The novel TAO rabbit model shows a closer resemblance to human TAO clinically, radiographically, and histopathologically. Histological analysis of the IT progression in the TAO model suggests that it is of VSMC origin.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3