High-resolution magnetic resonance imaging-based radiomic features aid in selecting endovascular candidates among patients with cerebral venous sinus thrombosis

Author:

Chang Yu-zhou,Zhu Hao-Yu,Song Yu-Qi,Tong Xu,Li Xiao-Qing,Wang Yi-Long,Dong Ke-Hui,Jiang Chu-Han,Zhang Yu-Peng,Mo Da-Peng

Abstract

Abstract Objectives Cerebral venous sinus thrombosis (CVST) can cause sinus obstruction and stenosis, with potentially fatal consequences. High-resolution magnetic resonance imaging (HRMRI) can diagnose CVST qualitatively, although quantitative screening methods are lacking for patients refractory to anticoagulation therapy and who may benefit from endovascular treatment (EVT). Thus, in this study, we used radiomic features (RFs) extracted from HRMRI to build machine learning models to predict response to drug therapy and determine the appropriateness of EVT. Materials and methods RFs were extracted from three-dimensional T1-weighted motion-sensitized driven equilibrium (MSDE), T2-weighted MSDE, T1-contrast, and T1-contrast MSDE sequences to build radiomic signatures and support vector machine (SVM) models for predicting the efficacy of standard drug therapy and the necessity of EVT. Results We retrospectively included 53 patients with CVST in a prospective cohort study, among whom 14 underwent EVT after standard drug therapy failed. Thirteen RFs were selected to construct the RF signature and CVST-SVM models. In the validation dataset, the sensitivity, specificity, and area under the curve performance for the RF signature model were 0.833, 0.937, and 0.977, respectively. The radiomic score was correlated with days from symptom onset, history of dyslipidemia, smoking, fibrin degradation product, and D-dimer levels. The sensitivity, specificity, and area under the curve for the CVST-SVM model in the validation set were 0.917, 0.969, and 0.992, respectively. Conclusions The CVST-SVM model trained with RFs extracted from HRMRI outperformed the RF signature model and could aid physicians in predicting patient responses to drug treatment and identifying those who may require EVT.

Funder

Beijing Natural Science Foundation project

Beijing Neurosurgical Institute Innovation and Exploration

Publisher

Springer Science and Business Media LLC

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3