Abstract
Abstract
Background
We compared the prognostic value of plasma high mobility group box 1 protein (HMGB1) and histone H3 levels with the International Society on Thrombosis and Haemostasis (ISTH) disseminated intravascular coagulation (DIC) scores for 28-day in-hospital mortality in patients with DIC caused by various underlying diseases.
Methods
We conducted a multicenter prospective cohort study including two hematology departments, four emergency departments, and one general medicine department in Japan, between August 2017 and July 2021. We included patients diagnosed with DIC by the ISTH DIC scoring system.
Results
Overall, 104 patients were included: 50 with hematopoietic disorders, 41 with infections, and 13 with the other diseases. The 28-day in-hospital mortality rate was 21%. The receiver operator characteristic (ROC) curve showed that a DIC score of 6 points, plasma HMGB1 level of 8 ng/mL, and plasma histone H3 level of 2 ng/mL were the optimal cutoff points. The odds ratios of more than these optimal cutoff points of the DIC score, plasma HMGB1, and histone H3 levels were 1.58 (95% confidence interval [CI]: 0.60 to 4.17, p = 0.36), 5.47 (95% CI: 1.70 to 17.6, p = 0.004), and 9.07 (95% CI: 2.00 to 41.3, p = 0.004), respectively. The area under the ROC curve of HMGB1 (0.74, 95% CI: 0.63 to 0.85) was better than that of the ISTH DIC scores (0.55, 95% CI: 0.43 to 0.67, p = 0.03), whereas that of histone H3 was not (0.71, 95% CI: 0.60 to 0.82, p = 0.07). Calibration and net reclassification plots of HMGB1 identified some high-risk patients, whereas the ISTH DIC scores and histone H3 did not. The category-free net reclassification improvement of HMGB1 was 0.45 (95% CI: 0.01 to 0.90, p = 0.04) and that of histone H3 was 0.37 (95% CI: − 0.05 to 0.78, p = 0.08).
Conclusions
Plasma HMGB1 levels have a prognostic value for mortality in patients with DIC. This finding may help physicians develop treatment strategies.
Funder
Japanese Society for Thrombosis and Haemostasis
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Taylor FB Jr, Toh CB, Hoots WK, Wada H, Levi M. Scientific Subcommittee on Disseminated Intravascular Coagulation (DIC) of the International Society on Thrombosis and Haemostasis (ISTH). Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001;86:1327–30.
2. Yamakawa K, Ohbe H, Taniguchi K, Matsui H, Fushimi K, Yasunaga H. Time trends of the outcomes and treatment options for disseminated intravascular coagulation: A nationwide observational study in Japan. JMA J. 2020;3:313–20.
3. Saito S, Uchino S, Hayakawa M, Yamakawa K, Kudo D, Iizuka Y, et al. Epidemiology of disseminated intravascular coagulation in sepsis and validation of scoring systems. J Crit Care. 2019;50:23–30.
4. Levi M, Scully M. How I treat disseminated intravascular coagulation. Blood. 2018;131:845–54.
5. Cowley LE, Farewell DM, Maguire S, Kemp AM. Methodological standards for the development and evaluation of clinical prediction rules: A review of the literature. Diagn Progn Res. 2019;3:16.