Relation between structure and low-temperature geothermal systems in Fukuoka city, southwestern Japan

Author:

Saibi Hakim,Nishijima Jun,Hirano Tomohiro,Fujimitsu Yasuhiro,Ehara Sachio

Abstract

Abstract The Fukuoka area is located in the southwestern part of Japan. The Yokote-Ijiri area, located in the southern part of Fukuoka city, has several low-temperature geothermal systems, including eleven hot springs. From 1996 to 2008, the Fukuoka area was investigated by gravity survey, using Scintrex CG-3 and CG-3M gravimeters, in an attempt to delineate its subsurface structure. The surveys were intended to improve the understanding of the relation between the geothermal systems and the subsurface structure as well as to locate the active faults in the surveyed area, which are responsible for generating large earthquakes. The gravity data were analyzed using integrated gradient interpretation techniques, such as the Horizontal Gradient (HG), Tilt Derivative (TDR), and Euler deconvolution methods. With these techniques, many faults were detected, including the famous Kego fault, which is an active fault in Fukuoka city. A 2-D gravity model was constructed to show the relationship between the faults and the geothermal systems. The results of the present study will hopefully lead to an understanding of the relationships between the interpreted faults and the location of the low-temperature geothermal systems and possibly aid in future geothermal exploration of the area.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Reference24 articles.

1. Cordell, L., Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin, New Mexico, in Guidebook to Santa Fe Country, 30th Field Conference, edited by R. V. Ingersoll, New Mexico Geological Survey, pp. 59–64, 1979.

2. Cordell, L. and V. J. S. Grauch, Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico, in The utility of regional gravity and magnetic anomaly maps, edited by W. J. Hinz, Soc. Explor. Geophys., 181–197, 1985.

3. Corner, B. and W. A. Wilsher, Structure of the Witwatersrand basin derived from interpretation of the aeromagnetic and gravity data, in Proceedings of exploration ’87, third decennial international conference on geophysical and geochemical exploration for minerals and groundwater, edited by G. D. Garland, Ontario Geol. Survey. Special, 3, 532–546, 1989.

4. Fairhead, J. D., K. J. Bennet, R. H. Gordon, and D. Huang, Euler: Beyond the ‘Black Box’, 64th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 422–424, 1994.

5. FitzGerald, D., A. Reid, and P. McInerney, New discrimination techniques for Euler deconvolution, Comput. Geosci., 30, 461–469, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3