Effects of interactions between stations on the calculation of geomagnetically induced currents in an electric power transmission system

Author:

Pirjola Risto

Abstract

Abstract “Geomagnetically induced currents” (GIC) in ground-based technological networks are a manifestation of space weather. GIC are a potential source of problems to the systems and therefore important in practice. GIC in a power system (or in principle in any other discretely-earthed system) can be calculated conveniently by using matrix equations presented earlier. Since temporal variations associated with GIC are slow compared to the 50/60 Hz frequency used in power transmission, a dc treatment is acceptable. An essential quantity in calculations of GIC in a power grid is the earthing impedance matrix, which is the transfer function coupling GIC flowing to (from) the Earth with the voltages between the earthing points, called nodes or (sub)stations, and a remote earth. The diagonal elements of the matrix equal the earthing resistances of the nodes whereas an off-diagonal element expresses how much GIC at one earthing point affects the voltage at another node. In GIC calculations, except for some special treatments of individual sites, the off-diagonal elements are usually neglected by saying simply that the earthing points (are assumed to) lie distantly enough. In this paper, we examine the effects of off-diagonal elements of the earthing impedance matrix, i.e. the effects of interactions between different stations, on GIC calculations in greater detail and more quantitatively than before. We consider a fictitious system that represents a high-voltage power grid and a simple “network” consisting of two stations with a line connecting them. For both systems, the conclusion can be drawn that the off-diagonal elements do not play a major role in practice. Modelling them only approximately, or even ignoring them, is not of great significance compared to other shortcomings involved in GIC calculations. This is particularly true when looking at a power grid as a whole although at some individual stations the neglect may lead to larger errors in GIC values.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Reference26 articles.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Protecting Radial Electric Grid from Geoinduced Currents;2024 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2024-05-20

2. Resistor-Thyristor Geoinduced Current Protection for Power Transformer;2024 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2024-05-20

3. Modeling of Induction in Integrated Power-Gas Systems Due to Geomagnetic Disturbances;IEEE Transactions on Power Delivery;2023-12

4. Identifying Operating Parameters of Synchronous Generator that are the Most Sensitive to Impacts of Quasi-Constant Currents on Unit Transformer;2023 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2023-05-15

5. Power Transmission Line Model For Transient Analysis In Power Systems Due The High Geomagnetic Activity;2022 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM);2022-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3