Building RadiologyNET: an unsupervised approach to annotating a large-scale multimodal medical database

Author:

Napravnik Mateja,Hržić Franko,Tschauner Sebastian,Štajduhar Ivan

Abstract

Abstract Background The use of machine learning in medical diagnosis and treatment has grown significantly in recent years with the development of computer-aided diagnosis systems, often based on annotated medical radiology images. However, the lack of large annotated image datasets remains a major obstacle, as the annotation process is time-consuming and costly. This study aims to overcome this challenge by proposing an automated method for annotating a large database of medical radiology images based on their semantic similarity. Results An automated, unsupervised approach is used to create a large annotated dataset of medical radiology images originating from the Clinical Hospital Centre Rijeka, Croatia. The pipeline is built by data-mining three different types of medical data: images, DICOM metadata and narrative diagnoses. The optimal feature extractors are then integrated into a multimodal representation, which is then clustered to create an automated pipeline for labelling a precursor dataset of 1,337,926 medical images into 50 clusters of visually similar images. The quality of the clusters is assessed by examining their homogeneity and mutual information, taking into account the anatomical region and modality representation. Conclusions The results indicate that fusing the embeddings of all three data sources together provides the best results for the task of unsupervised clustering of large-scale medical data and leads to the most concise clusters. Hence, this work marks the initial step towards building a much larger and more fine-grained annotated dataset of medical radiology images.

Funder

Hrvatska Zaklada za Znanost

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3