Towards a potential pan-cancer prognostic signature for gene expression based on probesets and ensemble machine learning

Author:

Chicco DavideORCID,Alameer AbbasORCID,Rahmati SaraORCID,Jurman GiuseppeORCID

Abstract

AbstractCancer is one of the leading causes of death worldwide and can be caused by environmental aspects (for example, exposure to asbestos), by human behavior (such as smoking), or by genetic factors. To understand which genes might be involved in patients’ survival, researchers have invented prognostic genetic signatures: lists of genes that can be used in scientific analyses to predict if a patient will survive or not. In this study, we joined together five different prognostic signatures, each of them related to a specific cancer type, to generate a unique pan-cancer prognostic signature, that contains 207 unique probesets related to 187 unique gene symbols, with one particular probeset present in two cancer type-specific signatures (203072_at related to the MYO1E gene). We applied our proposed pan-cancer signature with the Random Forests machine learning method to 57 microarray gene expression datasets of 12 different cancer types, and analyzed the results. We also compared the performance of our pan-cancer signature with the performances of two alternative prognostic signatures, and with the performances of each cancer type-specific signature on their corresponding cancer type-specific datasets. Our results confirmed the effectiveness of our prognostic pan-cancer signature. Moreover, we performed a pathway enrichment analysis, which indicated an association between the signature genes and a protein-protein interaction analysis, that highlighted PIK3R2 and FN1 as key genes having a fundamental relevance in our signature, suggesting an important role in pan-cancer prognosis for both of them.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3