Unsupervised encoding selection through ensemble pruning for biomedical classification

Author:

Spänig Sebastian,Michel Alexander,Heider DominikORCID

Abstract

Abstract Background Owing to the rising levels of multi-resistant pathogens, antimicrobial peptides, an alternative strategy to classic antibiotics, got more attention. A crucial part is thereby the costly identification and validation. With the ever-growing amount of annotated peptides, researchers leverage artificial intelligence to circumvent the cumbersome, wet-lab-based identification and automate the detection of promising candidates. However, the prediction of a peptide’s function is not limited to antimicrobial efficiency. To date, multiple studies successfully classified additional properties, e.g., antiviral or cell-penetrating effects. In this light, ensemble classifiers are employed aiming to further improve the prediction. Although we recently presented a workflow to significantly diminish the initial encoding choice, an entire unsupervised encoding selection, considering various machine learning models, is still lacking. Results We developed a workflow, automatically selecting encodings and generating classifier ensembles by employing sophisticated pruning methods. We observed that the Pareto frontier pruning is a good method to create encoding ensembles for the datasets at hand. In addition, encodings combined with the Decision Tree classifier as the base model are often superior. However, our results also demonstrate that none of the ensemble building techniques is outstanding for all datasets. Conclusion The workflow conducts multiple pruning methods to evaluate ensemble classifiers composed from a wide range of peptide encodings and base models. Consequently, researchers can use the workflow for unsupervised encoding selection and ensemble creation. Ultimately, the extensible workflow can be used as a plugin for the PEPTIDE REACToR, further establishing it as a versatile tool in the domain.

Funder

Bundesministerium für Wirtschaft und Energie

Bundesministerium für Bildung und Forschung

Philipps-Universität Marburg

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3