Machine learning approaches for the genomic prediction of rheumatoid arthritis and systemic lupus erythematosus

Author:

Chung Chih-Wei,Hsiao Tzu-Hung,Huang Chih-Jen,Chen Yen-Ju,Chen Hsin-Hua,Lin Ching-Heng,Chou Seng-Cho,Chen Tzer-Shyong,Chung Yu-Fang,Yang Hwai-I,Chen Yi-Ming

Abstract

Abstract Background Rheumatoid arthritis (RA) and systemic lupus erythematous (SLE) are autoimmune rheumatic diseases that share a complex genetic background and common clinical features. This study’s purpose was to construct machine learning (ML) models for the genomic prediction of RA and SLE. Methods A total of 2,094 patients with RA and 2,190 patients with SLE were enrolled from the Taichung Veterans General Hospital cohort of the Taiwan Precision Medicine Initiative. Genome-wide single nucleotide polymorphism (SNP) data were obtained using Taiwan Biobank version 2 array. The ML methods used were logistic regression (LR), random forest (RF), support vector machine (SVM), gradient tree boosting (GTB), and extreme gradient boosting (XGB). SHapley Additive exPlanation (SHAP) values were calculated to clarify the contribution of each SNPs. Human leukocyte antigen (HLA) imputation was performed using the HLA Genotype Imputation with Attribute Bagging package. Results Compared with LR (area under the curve [AUC] = 0.8247), the RF approach (AUC = 0.9844), SVM (AUC = 0.9828), GTB (AUC = 0.9932), and XGB (AUC = 0.9919) exhibited significantly better prediction performance. The top 20 genes by feature importance and SHAP values included HLA class II alleles. We found that imputed HLA-DQA1*05:01, DQB1*0201 and DRB1*0301 were associated with SLE; HLA-DQA1*03:03, DQB1*0401, DRB1*0405 were more frequently observed in patients with RA. Conclusions We established ML methods for genomic prediction of RA and SLE. Genetic variations at HLA-DQA1, HLA-DQB1, and HLA-DRB1 were crucial for differentiating RA from SLE. Future studies are required to verify our results and explore their mechanistic explanation.

Funder

Academia Sinica

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3