Neural network methods for diagnosing patient conditions from cardiopulmonary exercise testing data

Author:

Brown Donald E.ORCID,Sharma Suchetha,Jablonski James A.,Weltman Arthur

Abstract

Abstract Background Cardiopulmonary exercise testing (CPET) provides a reliable and reproducible approach to measuring fitness in patients and diagnosing their health problems. However, the data from CPET consist of multiple time series that require training to interpret. Part of this training teaches the use of flow charts or nested decision trees to interpret the CPET results. This paper investigates the use of two machine learning techniques using neural networks to predict patient health conditions with CPET data in contrast to flow charts. The data for this investigation comes from a small sample of patients with known health problems and who had CPET results. The small size of the sample data also allows us to investigate the use and performance of deep learning neural networks on health care problems with limited amounts of labeled training and testing data. Methods This paper compares the current standard for interpreting and classifying CPET data, flowcharts, to neural network techniques, autoencoders and convolutional neural networks (CNN). The study also investigated the performance of principal component analysis (PCA) with logistic regression to provide an additional baseline of comparison to the neural network techniques. Results The patients in the sample had two primary diagnoses: heart failure and metabolic syndrome. All model-based testing was done with 5-fold cross-validation and metrics of precision, recall, F1 score, and accuracy. As a baseline for comparison to our models, the highest performing flow chart method achieved an accuracy of 77%. Both PCA regression and CNN achieved an average accuracy of 90% and outperformed the flow chart methods on all metrics. The autoencoder with logistic regression performed the best on each of the metrics and had an average accuracy of 94%. Conclusions This study suggests that machine learning and neural network techniques, in particular, can provide higher levels of accuracy with CPET data than traditional flowchart methods. Further, the CNN performed well with a small data set showing that these techniques can be designed to perform well on small data problems that are often found in health care and the life sciences. Further testing with larger data sets is needed to continue evaluating the use of machine learning to interpret CPET data.

Funder

National Center for Advancing Translational Sciences

Naval Postgraduate School

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3