Abstract
Abstract
Background
The COVID-19 pandemic has caused major health and socio-economic disruptions worldwide. Accurate investigation of emerging data is crucial to inform policy makers as they construct viral mitigation strategies. Complications such as variable testing rates and time lags in counting cases, hospitalizations and deaths make it challenging to accurately track and identify true infectious surges from available data, and requires a multi-modal approach that simultaneously considers testing, incidence, hospitalizations, and deaths. Although many websites and applications report a subset of these data, none of them provide graphical displays capable of comparing different states or countries on all these measures as well as various useful quantities derived from them. Here we introduce a freely available dynamic representation tool, COVID-TRACK, that allows the user to simultaneously assess time trends in these measures and compare various states or countries, equipping them with a tool to investigate the potential effects of the different mitigation strategies and timelines used by various jurisdictions.
Findings
COVID-TRACK is a Python based web-application that provides a platform for tracking testing, incidence, hospitalizations, and deaths related to COVID-19 along with various derived quantities. Our application makes the comparison across states in the USA and countries in the world easy to explore, with useful transformation options including per capita, log scale, and/or moving averages. We illustrate its use by assessing various viral trends in the USA and Europe.
Conclusion
The COVID-TRACK web-application is a user-friendly analytical tool to compare data and trends related to the COVID-19 pandemic across areas in the United States and worldwide. Our tracking tool provides a unique platform where trends can be monitored across geographical areas in the coming months to watch how the pandemic waxes and wanes over time at different locations around the USA and the globe.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献