COVID-TRACK: world and USA SARS-COV-2 testing and COVID-19 tracking

Author:

Zohner Ye EmmaORCID,Morris Jeffrey S.

Abstract

Abstract Background The COVID-19 pandemic has caused major health and socio-economic disruptions worldwide. Accurate investigation of emerging data is crucial to inform policy makers as they construct viral mitigation strategies. Complications such as variable testing rates and time lags in counting cases, hospitalizations and deaths make it challenging to accurately track and identify true infectious surges from available data, and requires a multi-modal approach that simultaneously considers testing, incidence, hospitalizations, and deaths. Although many websites and applications report a subset of these data, none of them provide graphical displays capable of comparing different states or countries on all these measures as well as various useful quantities derived from them. Here we introduce a freely available dynamic representation tool, COVID-TRACK, that allows the user to simultaneously assess time trends in these measures and compare various states or countries, equipping them with a tool to investigate the potential effects of the different mitigation strategies and timelines used by various jurisdictions. Findings COVID-TRACK is a Python based web-application that provides a platform for tracking testing, incidence, hospitalizations, and deaths related to COVID-19 along with various derived quantities. Our application makes the comparison across states in the USA and countries in the world easy to explore, with useful transformation options including per capita, log scale, and/or moving averages. We illustrate its use by assessing various viral trends in the USA and Europe. Conclusion The COVID-TRACK web-application is a user-friendly analytical tool to compare data and trends related to the COVID-19 pandemic across areas in the United States and worldwide. Our tracking tool provides a unique platform where trends can be monitored across geographical areas in the coming months to watch how the pandemic waxes and wanes over time at different locations around the USA and the globe.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry

Reference24 articles.

1. Chauhan S. Comprehensive review of coronavirus disease 2019 (COVID-19). Biomed J. 2020. https://doi.org/10.1016/j.bj.2020.05.023.

2. Coronavirus. World Health Organization. 2020. http://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed 29 June 2020.

3. Jordan RE, Adab P, Cheng KK. Covid-19: risk factors for severe disease and death. BMJ. 2020:m1198.

4. Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention. 2020. http://www.cdc.gov/coronavirus/2019-ncov/index.html. Accessed 29 June 2020.

5. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med. 2020;172(9):577–82.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3