Sparse self-attention aggregation networks for neural sequence slice interpolation

Author:

Wang Zejin,Liu Jing,Chen Xi,Li GuoqingORCID,Han Hua

Abstract

Abstract Background Microscopic imaging is a crucial technology for visualizing neural and tissue structures. Large-area defects inevitably occur during the imaging process of electron microscope (EM) serial slices, which lead to reduced registration and semantic segmentation, and affect the accuracy of 3D reconstruction. The continuity of biological tissue among serial EM images makes it possible to recover missing tissues utilizing inter-slice interpolation. However, large deformation, noise, and blur among EM images remain the task challenging. Existing flow-based and kernel-based methods have to perform frame interpolation on images with little noise and low blur. They also cannot effectively deal with large deformations on EM images. Results In this paper, we propose a sparse self-attention aggregation network to synthesize pixels following the continuity of biological tissue. First, we develop an attention-aware layer for consecutive EM images interpolation that implicitly adopts global perceptual deformation. Second, we present an adaptive style-balance loss taking the style differences of serial EM images such as blur and noise into consideration. Guided by the attention-aware module, adaptively synthesizing each pixel aggregated from the global domain further improves the performance of pixel synthesis. Quantitative and qualitative experiments show that the proposed method is superior to the state-of-the-art approaches. Conclusions The proposed method can be considered as an effective strategy to model the relationship between each pixel and other pixels from the global domain. This approach improves the algorithm’s robustness to noise and large deformation, and can accurately predict the effective information of the missing region, which will greatly promote the data analysis of neurobiological research.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Science

Instrument function development innovation program of Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Genetics,Molecular Biology,Biochemistry

Reference40 articles.

1. Afshar P, Shahroudnejad A, Mohammadi A, Plataniotis KN. Carisi: Convolutional autoencoder-based inter-slice interpolation of brain tumor volumetric images. In: 2018 25th IEEE International Conference on Image Processing (ICIP). Athens: IEEE: 2018. p. 1458–62.

2. Wu Z, Wei J, Yuan W, Wang J, Tasdizen T. Inter-slice image augmentation based on frame interpolation for boosting medical image segmentation accuracy. arXiv preprint arXiv:2001.11698. 2020.

3. Nguyen-Duc T, Yoo I, Thomas L, Kuan A, Lee W-C, Jeong W-K. Weakly supervised learning in deformable em image registration using slice interpolation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). Venezia: IEEE: 2019. p. 670–3.

4. Xie Q, Chen X, Deng H, Liu D, Sun Y, Zhou X, Yang Y, Han H. An automated pipeline for bouton, spine, and synapse detection of in vivo two-photon images. BioData Min. 2017; 10(1):40.

5. Li W, Liu J, Xiao C, Deng H, Xie Q, Han H. A fast forward 3d connection algorithm for mitochondria and synapse segmentations from serial em images. BioData Min. 2018; 11(1):24.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3