Abstract
AbstractSquash (Cucurbita pepo L.), is one of the most important vegetable crops for human nutriment in Egypt and the world. One of the most serious diseases that infect squash and cause yield losses was powdery mildew, caused by Podosphaera xanthisii. The aim of this study was to investigate the role of Bacillus subtilis, Paenibacillus polymyxa (109 cell ml/1), Trichoderma harzianum, T. album, T. viride and T. hamatum (107 spore ml/l) for controlling disease under greenhouse conditions. Results indicated that all treatments significantly inhibited the conidial germination of P. xanthii than control in vitro and decreased the incidence and disease severity after spraying with the bio-agents on squash plants under greenhouse conditions. The fungicide, Topas-100 (10.0% penconazole “w/v” [(R,S-1-(2-(2,4-dichlorophenyl)-Q pentyl)-1H-1,2,4-triazole]), followed by B. subtilis was highly significant for decreasing disease incidence (2.8 and 5.3%, respectively) and disease severity percentage (3.5 and 4.8%, respectively) than the control. The activities of biochemical changes, i.e., peroxidase, polyphenol oxidase, and total phenols, were significantly upregulated as results of most treatments. Also, bio-agent treatments caused significant increase in yield characteristics of squash plants such as fruit number/plant and fruit weight/plant than control. B. subtilis recorded the highest increase (110.9% and 98.7%) in fruit number and fruit weight/plant than control.
Publisher
Springer Science and Business Media LLC
Subject
Insect Science,Plant Science,Agronomy and Crop Science,Ecology
Reference36 articles.
1. Abada K, El-Alim A, Abd-Elbacki A, Ashour A (2009) Management of pea powdery mildew disease using some resistance inducing chemicals and systemic fungicides. Egypt J Phytopathol 37:95–104
2. Abdel-Kader MM, El-Mougy NS, Aly MD, Lashin SM, Abdel-Kareem F (2012) Greenhouse biological approach for controlling foliar diseases of some vegetables. Adv Life Sci 2(4):98–103
3. Allam AI, Hollis JP (1972) Sulfide inhibition of oxidase in rice roots. Phytopathology 62:634–639
4. Bochow H, El-Sayed SF, Junge H, Stauropoulou A, Schmieeknecht G (2001) Use of Bacillus substilis as biocontrol agent. IV. Salt-stress tolerance induction by Bacillus substilis FZB24 seed application in tropical vegetable field crops, and its mode action. J Plant Dis Prot 108:21–30
5. Cardwell K, Schulthess F, Ndemah R, Ngoko Z (1997) A systems approach to assess crop health and maize yield losses due to pests and diseases in Cameroon. Agric Ecosyst Environ 65(1):33–47
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献