Effect of endophytic Bacillus and arbuscular mycorrhiza fungi (AMF) against Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici

Author:

Devi Nongthombam Olivia,Tombisana Devi R. K.,Debbarma Manashi,Hajong Monika,Thokchom Sushanti

Abstract

Abstract Background Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici (FOL) is a serious disease that causes significant economic losses in tomato production. Seventeen endophytic Bacillus isolates from tomato roots of Meghalaya were tested for antagonistic and plant growth promotion activities. Dominating arbuscular mycorrhiza fungi (AMF) spores were isolated from the rhizosphere soils of tomato grown in Meghalaya. The effect of different combinations of AMF and endophytic Bacillus on Fusarium wilt severity and growth of tomato plant under pot and field conditions was studied. Results The endophytic Bacillus isolates ERBS51 and ERBS10 showed a maximum inhibition against FOL, with 58.43 and 55.68%, respectively, in a dual culture experiment. ERBS51 and ERBS10 were identified as Bacillus velezensis and Bacillus sp., respectively, based on 16s rRNA sequencing. Both isolates were found positive for iturin A, surfactin, bacillomycin D, protease, cellulase, pectinase, alpha-amylase, siderophore, ammonia production and ZnCO3 solubilization. Funneliformis mosseae and Glomus fasciculatum were the dominating AMF species in tomato rhizosphere of Meghalaya. The result of pot and field experiments revealed that out of all the treatments, combination of Funneliformis mosseae + Glomus fasciculatum + Bacillus velezensis + Bacillus sp. was shown to be the best in reducing the severity of Fusarium wilt to 77.44 and 66.74%, respectively. F. mosseae + G. fasciculatum + B. velezensis + Bacillus sp. also recorded the highest in most growth attributes and yield. Conclusions Endophytic Bacillus (B. velezensis and Bacillus sp.) and AMF (F. mosseae and G. fasciculatum) were safe and effective biocontrol agents against Fusarium wilt of tomato.

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Plant Science,Agronomy and Crop Science,Ecology

Reference47 articles.

1. Ajilogba CF, Babalola OO (2013) Integrated management strategies for tomato Fusarium wilt. Biocontrol Sci 18:117–127

2. Aleksandrov VG, Blagodyr RN, Ilev IP (1967) Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiol Z 29(11):1–1

3. Cai X, Zhao H, Liang C, Li M, Liu R (2021) Effects and mechanisms of symbiotic microbial combination agents to control tomato Fusarium crown and root rot disease. Front Microbiol 12:1555

4. Cano RJ, Borucki MK, Schweitzer MH, Poinar HN, Poinar GO, Pollard KJ (1994) Bacillus DNA in fossil bees: an ancient symbiosis? Appl Environ Microbiol 60(6):2164–2167

5. Cappuccino JG, Sherman N (1992) Biochemical activities of microorganisms. In: Cappuccino JG, Sherman N (eds) Microbiology: a laboratory manual, 9th edn. The Benjamin/Cumming Pub. Co., San Francisco, pp 105–300

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3