Beauveria bassiana: as a potential microbial biocontrol agent for tea mosquito bug, Helopeltis theivora Waterhouse (Hemiptera: Miridae) in Dooars and Darjeeling, India

Author:

Deka Bhabesh,Babu AzariahORCID,Peter Arulmarianathan John,Pandey Abhay Kumar,Kumhar Kishor Chand,Sarkar Suman,Rajbongshi Hirakjyoti,Dey Pritam,Amalraj Emmanuel Leo Daniel,Talluri Venkateswara Rao

Abstract

Abstract Background In the present study, the efficacy of two isolates of Beauveria bassiana namely, BKN20 and BKN1/14 was evaluated against the tea mosquito bug (TMB), Helopeltis theivora, Waterhouse (Hemiptera: Miridae) damaging harvestable shoots of tea plants in the Dooars and Darjeeling regions of West Bengal, India. Results Laboratory study revealed that, in both isolates, BKN20 was more pathogenic than BKN1/14, exhibiting 76% mortality of the test insect. The BKN20 isolate was formulated as an aqueous suspension (5%AS), and evaluated against TMB through micro-plot trials in tea plantations. The Micro-plot field study revealed a maximum of 72.19% reduction in the shoot damage due to TMB in plots sprayed with a 1000 ml/ha concentration of BKN20 5%AS containing 2 × 107 conidia/ml, as compared to the synthetic insecticide (Thiamethoxam 25%WG), where a 63.12% reduction in the shoots was recorded. Furthermore, different concentrations of the formulated BKN20 5%AS were evaluated against the test insect at 2 locations of tea gardens in the Dooars and Darjeeling regions. The results from both locations revealed that 1000 and 1200 ml/ha concentrations of BKN20 5%AS (each concentration containing 2 × 107 conidia/ml) significantly (p < 0.05) reduced the TMB population and they were more effective than Thiamethoxam 25%WG (120 g/ha). However, non-significant differences in crop yields were recorded. The formulation BKN20 5%AS was found to be non-pathogenic to non-target insects, i.e. natural enemies present in the tea ecosystem. BKN20 5%AS had no phytotoxic effect on the tea leaves, with acceptable organoleptic attributes. Conclusion The BKN20 isolate could be commercialized as an alternative microbial insecticide to reduce the load of chemical insecticides in the tea ecosystem.

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Plant Science,Agronomy and Crop Science,Ecology

Reference36 articles.

1. Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

2. Babu A, Perumalsamy K, Sankara Rama Subramaniam M, Muraleedharan N (2008) Use of neem kernel aqueous extract for the management of red spider mite infesting tea in south India. J Plant Crops 36:393–397

3. Borkakati RN, Saikia DK (2019) Efficacy of Beauveria bassiana (Bals.) Vuill. against Helopeltis theivora Waterhouse in tea RN Borkakati and DK Saikia. J Entomol Zool Stud 7:52–53

4. Cheramgoi E, Wanjala FME, Sudoi V, Wanyoko J, Mwamburi L, Nyukuri R (2016) Efficacy and mode of application of local Beauveria bassiana isolates in the control of the tea weevil. Annu Res Rev Biol 10(1–8):23235

5. Dhar S, Jindal V, Jariyal M, Gupta VK (2019) Molecular characterization of new isolates of the entomopathogenic fungus Beauveria bassiana and their efficacy against the tobacco caterpillar, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Egypt J Biol Pest Contr 29:8

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3