Site-directed mutagenesis in Cry proteins of Bacillus thuringiensis to demonstrate the role of domain II and domain III in toxicity enhancement toward Spodoptera litura

Author:

Khurshid Huma,Zaheer Hafsa,Yunus Fakhar-un-Nisa,Manzoor Farkhanda,Latif Aasma Abdul,Rashid Farzana

Abstract

Abstract Background Bacillusthuringiensis (Bt) is a gram-positive bacterium responsible for the production of a wide variety of insecticidal Cry, Cyt, and Vip proteins with distinct insect specificities. The bioinsecticides derived from Bt Cry proteins account for > 95% of the microbial biopesticide market to combat a variety of pest species belonging to the order Lepidoptera (including Spodoptera spp.), Coleoptera, Diptera, etc. Cry proteins are engineered by using different molecular techniques to control the development of multiple insecticide resistance problems in major insect pests using bio-toxicity assays. Main body It is common knowledge that the Cry proteins domain II and III are involved in pore formation or interaction between several insect larval receptors and the membranes of epithelial cells. In the present research, the PCR site-directed mutagenesis technique was used to introduce a total of four mutations into the cry genes (cry1 and cry2) near key regions of active proteins. The diet overlay bioassay was used to test the efficacy of expressed mutant Cry proteins against Spodopteralitura (Fabricius) (Lepidoptera: Noctuidae), one of the most damaging bollworms to cotton, causing severe output losses. Results Two amino acid replacements in the receptor binding domain of Cry1Ac toxins (S573, L588) showed decrease in activity for Cry1Ac mutants. However, amino acid substitutions in the receptor binding/pore formation domain of Cry2Aa (T325, S445) were to some extent proved more toxic than wild-type recombinant Cry2Aa protein, with an increase in mortality percentage from 3.33 to 6.66% after 24 to 72 h of treatment, respectively, against 2nd instar larvae of S.litura. Conclusion A comparison of activity demonstrated that larvae of S.litura were more susceptible to Cry2Aa toxins than those of Cry1Ac toxins after being treated with Bt toxins. The LC50 values of Cry2Aa mutants were slightly reduced for S.litura larvae than those of Cry1Ac mutants.

Funder

Higher Education Commision, Pakistan

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Plant Science,Agronomy and Crop Science,Ecology

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3