Effect of different plant extracts and nanoparticles on Thrips tabaci (Lind.) (Thysanoptera: Thripidae) under field conditions and their allelopathic potential on the onion, Allium cepa L. using bioassays and RAPD analysis

Author:

Qari Sameer H.ORCID,Khalil Abdelhalem H.,Abdelfattah Nilly A. H.,Shehawy Ayman A.

Abstract

AbstractThe present study was conducted to investigate the toxicity of Aerosil 200® (fumed silica nanoparticles) and leaf extracts of four plants, Cinnamomum camphora, Matricaria chamomilla, Mentha arvensis, and Trigonella foenum-graecum against Thrips tabaci (Lind.) (Thysanoptera: Thripidae) in onion fields, as well their allelopathic effects on onions; moreover, the chlorophyll, phenol, and protein contents were determined in onions. This study was performed in completely randomized plots. After a growth period of 1 month, bioassay investigations and molecular polymorphism in T. tabaci by RAPD-PCR were performed, and total chlorophyll, phenol, and protein concentrations were investigated in onion plants posttreatment as well. The initial reduction% of the T. tabaci population in onion fields after application of a high concentration of nanoparticles (Aerosil 200® (4 ml/l)) and 8000 ppm concentrations of the four plant extracts were 83.66, 81.08, 86.92, 74.49, and 91.38%, respectively, whereas their persistence effects were 73.18, 67.78, 71.46, 66.94, and 78.29%, respectively. Furthermore, the total chlorophyll contents in onions treated with the nanoparticles and four plant extracts were 1.35, 1.17, 1.09, 1.07, and 1.18 mg/g, respectively; additionally, the concentrations of phenols were 4.65, 3.15, 3.15, 2.85, and 3.70 mg/g in onions treated with C. camphora, M. chamomilla, M. arvensis, T. foenum-graecum, and Aerosil 200®, respectively. The C. camphora extract was the most potent, as it increased the protein content in the onion plants, while the Aerosil 200® decreased the protein content in onions. In addition, DNA-RAPD showed that the polymorphism percentages were 73, 71, and 67% when treated with high concentrations of C. camphora and M. arvensis extracts and Aerosol 200®, respectively. T. foenum-graecum and M. chamomilla extracts induced the least polymorphism (17 and 16%, respectively). Overall, this study indicated that these plant extracts as well as the nanoparticles in Aerosil 200® could be used to reduce onion infestations of T. tabaci in the field environment.

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Plant Science,Agronomy and Crop Science,Ecology

Reference33 articles.

1. Abdelkhalek A, Qari S, Hafez E (2019) Iris yellow spot virus induced chloroplast malformation results in male sterility. J Biosci 44:142

2. Abreu ME, Munne’-Bosch S (2009) Salicylic acid deWciency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. J Exp Bot 2:1–11

3. Adakole JA and Adeyemi AFF (2012) Larvicidal effects of cymbopogon citratus (lemon grass) extract against Culex quinquefasciatus qularvae (Diptera, culicidae). IJAES 7: 187–192..

4. Brunner PC, Chatzivassiliou EK, Katis NI, Frey JE (2004) Host-associated genetic differentiation in Thrips tabaci (Insecta: Thysanoptera), as determined from mtDNA sequence data. Heredity 93:364–370

5. Denre M (2014) The determination of vitamin C, total phenol and antioxidant activity of some commonly cooking spices crops used in West Bengal. Inter j of Physiology and Biochemistry 6(6):66–70

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3