Abstract
Abstract
Background
Entomopathogenic nematodes (EPNs), as biological control agents, have been isolated from many regions throughout the world. Local isolates of EPNs are usually more effective for controlling indigenous insect pests as they are adapted to the local environmental conditions and the insect pest species.
Results
In the present work, EPN isolates were searched in the soil under citrus and guava trees, and Egyptian clover at Noubaria region, Elbhaira governorate, Egypt, within two consecutive years. The EPNs were isolated from two positive soil samples of Egyptian clover (Trifolium alexandrinum) (TAN5) and guava trees (Psidium guajava) (PGN6), while the EPNs were not existent in the soil samples under citrus. Laboratory applications of the two EPNs isolates against the cotton leafworm, Spodoptera littoralis(Boisd.), and the black cutworm, Agrotis ipsilon (Hufn.) (Lepidoptera: Noctuidae), were recorded. Nematodes naturally occurring in the soil were trapped by full-grown larvae of the greater wax moth (Galleria mellonella L.). Infected larvae turned from whitish beige to dark reddish color, proofed that these isolates belong to the genus Heterorhabditis. Laboratory results revealed that the mortality rate ranges from 24 to 100% with TAN5 while from 18 to 96% with PGN6 at A. ipsilon larvae. The LC50 values of TAN5 against A. ipsilon were 1285.527 and 1560.747 IJs/cup, while those values for S. littoralis were 1339.099 and 2531.605 IJs/cup in larvae and pupae, respectively. The 3rd instar larvae of A. ipsilon and S. littoralis were more sensitive than the pupae. Production of Heterorhabditis sp. strain TAN5 was the highest in the reproduction of infective juveniles than the strain PGN6 at all concentrations.
Conclusions
The EPNs isolated from the soil samples belonged to the genus Heterorhabditis. Heterorhabditis sp. strain (TAN5) collected from the soil under Egyptian clover at Noubaria region was the highest reproduction and the most effective against both tested pests, A. ipsilon and S. littoralis larvae and pupae. EPN species would serve as an alternative to chemical pesticides and fit well in an integrated pest management program against larvae as well as adults and pupae of many economic insect pests which inhabit the soil.
Publisher
Springer Science and Business Media LLC
Subject
Insect Science,Plant Science,Agronomy and Crop Science,Ecology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献