Morphological and molecular identification of four Purpureocillium isolates and evaluating their efficacy against the sweet potato whitefly, Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae)

Author:

Sun Tingfei,Wu Jianhui,Ali Shaukat

Abstract

Abstract Background Entomopathogenic fungi are widely distributed and well described within the fungal kingdom. This study reports the isolation, characterization, and virulence of 4 Purpureocillium lilacinum isolates against the sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Results Four strains of Purpureocillium lilacinum (XI-1, XI-4, XI-5, and J27) were isolated from soil samples from different localities of China. The morphological studies observed that four strains showed essentially the same morphological characteristics. After 7 days of cultivation, the colonies were purple, round, and bulged. Conidia were single-celled, oval to spindle-shaped, chain-like, and the spore size was about 2.0–2.3 × 3.1–4.0 μm. The genome-based identification results showed that ITS sequences of XI-1 (GenBank accession # MW386433), XI-4 (GenBank accession # MW386434), XI-5 (GenBank accession # MW386435), and J27 (GenBank accession # MW386436) were similar to another P. lilacinum. The newly identified strains of P. lilacinum proved pathogenicity to B. tabaci under laboratory conditions. In addition, the P. lilacinum isolate XI-5 was the most virulent one against different nymphal instars of whitefly having median lethal concentration (LC50) values of 4.99 × 106, 4.82 × 105, and 2.85 × 106 conidia/ml, respectively, 7 days post application. Conclusion The newly isolated strains of P. lilacinum can be developed as a potential biopesticide against the whitefly although extensive field bioassays as well as development of proper formulation are still required.

Funder

Key Area Research and Development Program of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Plant Science,Agronomy and Crop Science,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3