Antagonistic potential of an Egyptian entomopathogenic nematode, compost and two native endophytic bacteria isolates against the root-knot nematode (Meloidogyne incognita) infecting potato under field conditions

Author:

Osman Hamida A. I.,Ameen Hoda H.,Hammam Mostafa M. A.,El-Sayed Ghada M.,Elkelany Usama Samy,Abd-Elgawad Mahfouz M. M.

Abstract

Abstract Background The root-knot nematode, Meloidogyne spp., are one of the most dominant and dangerous group of pests. The deformations and discolorations make tubers unmarketable and/or of less quality. Therefore, management of Meloidogyne spp. becomes an obligatory challenge that warrants intervention. Biological control agents are the best alternative tools for controlling plant-parasitic nematodes that comply with the requirements of the development of the green agriculture and that reduce the reliance on these harmful chemicals. Therefore, this study aimed to evaluate the effectiveness of compost singly, and in combinations with the bio-agents Heterorhabditis bacteriophora, and two bacterial isolates Nem 212 and Nem 213 against the root-knot nematode Meloidogyne incognita infecting potato plants under field conditions. Results Among 15 bacterial isolates (Nem205-Nem219) obtained from the rhizosphere of tomato and eggplant from Giza, Egypt, the two isolates (Nem 212 and Nem 213) were molecularly characterized based on the partial 16S rDNA sequencing analysis. These two bacterial isolates were deposited in the GenBank as Bacillus cereus Nem 212 and B. cereus Nem 213 and were tested against M. incognita J2s in vitro. Results showed that the cell filtrates of B. cereus Nem 212 and B. cereus Nem 213 gave the highest percentage of M. incognita J2s mortality (100%), after 48 h of the in vitro application. Moreover, all the applied treatments significantly suppressed the reproductive of M. incognita on potato plants and enhanced the potato crop yield under the field conditions. Compost enriched with B. cereus Nem 212 cell suspension was the most effective treatment. The combination between the bacterial cell suspension and the compost offered an increase in the disease curing and the potato plant growth and yield production, compared to the treatment with compost alone. The entomopathogenic nematode, Heterorhabditis bacteriophora, was relatively less effective in controlling M. incognita on potato, compared to B. cereus Nem 212 and/or B. cereus Nem 213 treatments. However, when compost was enriched with H. bacteriophora, it increased its capability to control the nematodes. Conclusions This study provides insights into the practical usage of EPNs H. bacteriophora, and the endophytic bacteria (B. cereus Nem 212 or B. cereus Nem 213) as biocontrol agents against M. incognita on potato plants. The application of compost enriched with the bacterial cell suspensions of either B. cereus Nem 212 or B. cereus Nem 213 and H. bacteriophora within Galleria mellonella cadaver proved efficient control of M. incognita infecting potato plants and improved the growth and yield of potato plants under field conditions.

Funder

National Research Centre

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Plant Science,Agronomy and Crop Science,Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3