Abstract
Abstract
Background
Carnation, a major cut flower product cultivated economically in Iran, faces economic challenges due to the devastating Fusarium wilt caused by Fusarium oxysporum f. sp. dianthi (Fod). To address this issue, twenty-five Trichoderma harzianum and T. viride isolates were collected from the rhizosphere soil of three Iranian provinces: Tehran, Markazi, and Fars. RAPD-PCR was applied to analyze the genetic relatedness of the isolates.
Results
The RAPD profiles showed genetic diversity among the isolates, with two major clusters. The antagonistic potential of the twenty isolates was evaluated against the carnation wilt caused by Fod. The results showed that Th1, Th7, and Th2 isolates of T. harzianum significantly inhibited Fod mycelial growth (58, 56.5, and 48.6%, respectively). Among T. viride isolates, Tv5, Tv4, and Tv7 exhibited the highest antifungal ability to inhibit mycelial growth. All investigated isolates of Trichoderma secreted volatile compounds that hindered Fod mycelial growth, with isolates of T. harzianum ranging from 9.3 to 67.5% inhibition and those of T. viride from 25.2 to 50.2%. Additionally, the experiment on competitive saprophytic ability indicated that maximum colonization occurred with Th1, Th7, and Th2 isolates at 78.2, 70.8, and 69.8%, respectively. Lastly, the greenhouse experiment showed a complete pathogen eradication or significant inhibition in the infected carnation after T. harzianum and T. viride. Conversely, control treatment with the Fod pathogen died after 90 days.
Conclusions
The investigation suggested that Trichoderma spp. could be a potential biocontrol agent to mitigate Fusarium wilt in carnation and improve production quality, replacing chemical pesticides.
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Alvarado-Marchena L, Rivera-Méndez W (2016) Molecular identification of Trichoderma spp. in garlic and onion fields and in vitro antagonism trials on Sclerotium cepivorum. Rev Bras Ciênc Solo. https://doi.org/10.1590/18069657rbcs20150454
2. Baayen R, Van Dreven F, Krijger M, Waalwijk C (1997) Genetic diversity in Fusarium oxysporum f. sp. dianthi and Fusarium redolens f. sp. dianthi. Eur J Plant Pathol 103:395–408. https://doi.org/10.1023/A:1008604416107
3. Cer C, Benlioglu S, Egerci Y (2022) The molecular detection of Fusarium oxysporum f. sp. dianthi races in protected carnation growing areas in western Turkey. J Plant Dis Prot 129(2):231–242. https://doi.org/10.1007/s41348-021-00545-9
4. Chakraborty B, Chakraborty U, Saha A, Dey P, Sunar K (2010) Molecular characterization of Trichoderma viride and Trichoderma harzianum isolated from soils of North Bengal based on rDNA markers and analysis of their PCR-RAPD profiles. Glob J Biotechnol Biochem 5:55–61
5. Charoenrak P, Chamswarng C (2015) Application of Trichoderma asperellum fresh culture bioproduct as potential biological control agent of fungal diseases to increase yield of rice (Oryza sativa L.). J ISSAAS 21(2):67–85
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献