Pathogenicity and other characteristics of the endophytic Beauveria bassiana strain (Bals.) (Hypocreales: Cordycipitaceae)

Author:

El-Maraghy Saad S. Mohamed,Abdel-Rahman Mohamed A. A.,Hassan Shimaa Hassan Mohamed,Hussein Khalid A.

Abstract

Abstract Background Agriculture crops such as tomatoes and wheat are frequently targeted by insect pests which have a significant negative impact on the agricultural economies. The deployment of entomopathogenic fungi (EPF) for the control of the insect pests is an important alternative to synthetic insecticides. The EPF, Beauveria bassiana (Balsamo) Vuillemin, has been reported widely as a suitable biological control agent of many agricultural pests. Results In this study, B. bassiana SS-1 was isolated from local plant crops and its pathogenicity was assessed against the greater wax moth larvae Galleria mellonella (L.). The development of the pathogenic B. bassiana SS-1 on the insect was visualized using scanning electron microscopy (SEM). Results showed the ability of B. bassiana SS-1 to secrete extracellularly the important enzymes essential for insect cuticle penetration. B. bassiana SS1 recorded the maximum mean lipase (5.3 U/ml), protease (32.13 U/ml), and chitinase activities (2.95 U/ml). The endophytic pathogenic fungus B. bassiana SS-1 demonstrated pathogenicity against the fourth instar larvae of G. mellonella showing LC50 at 2.47 × 102 conidia/ml and LC95 at 3.98 × 105 conidia/ml. The SEM results showed physical contact with B. bassiana SS-1 hyphae on the surface of the G. mellonella larvae. Thus, the isolated EPF B. bassiana SS-1, even endophytic, could be a promising biocontrol agent to manage agricultural insect pests. Conclusion This study provided a comprehensive characterization of the pathogenicity of B. bassiana SS-1 with its microbiological characteristics. Future studies are needed to focus on the detection of highly virulent isolates against different insect pests and to assess their field contribution as a favorable biological control agent.

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Plant Science,Agronomy and Crop Science,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3