Lecanicillium lecanii (Zimmermann) Zare & Gams, as an efficient biocontrol agent of tea thrips, Scirtothrips bispinosus Bagnall (Thysanoptera: Thripidae)

Author:

Subramaniam Mariappan Sankara Rama,Babu AzariahORCID,Deka Bhabesh

Abstract

Abstract Background Continuous and non-judicial application of synthetic insecticides to control the tea thrips, Scirtothrips bispinosus (Bagnall), one of the major tea pests in South India has led to certain undesirable issues in the ecosystem besides the presence of the pesticide residues in manufactured tea. Biological control agents are of immense importance in tea cultivation. The present study was designed to isolate Lecanicillium lecanii (Zimmermann) Zare & Gama from the field-collected cadavers of the insects/mites infected by fungi of tea growing areas of Anamallais (Tamil Nadu, South India), and to evaluate their field bio-efficacy against the tea thrips. Results Lecanicillium lecanii isolated from the tea ecosystem had been formulated into a wettable powder (WP) formulation and evaluated against tea thrips under both laboratory and field conditions. Among the several media evaluated, the PDAY (Potato Dextrose Agar + 1% Yeast powder) was found to be the best suitable medium for the growth and germination of spores. Optimum conditions for the growth of L. lecanii were found in PDAY medium at the pH 6-7, temperature 25-30°C and 90-95% RH. Exposure to UV light for more than 30 min significantly inhibited the growth of the fungus. Lecanicillium lecanii at (1 × 107 spore/ha) was found significantly effective against thrips. Fungal development index (FDI) of L. lecanii + jaggery significantly differed than other treatments. Lecanicillium lecanii at 1500g (1×107 conidia/ml) mixed in 400 l of water was effective against the tea thrips. Addition of equal amount of jaggery with L. lecanii wettable powder in the tank mixture could increase the efficacy of the mycopesticide against tea thrips. Conclusion The powder formulation of L. lecanii was found safer to natural enemies present in the tea ecosystem. After fulfilling the requirements for its registration and label claim on tea, this strain of L. lecanii could be commercialized for the benefit of the tea industry for the management of tea thrips in an eco-friendly manner.

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Plant Science,Agronomy and Crop Science,Ecology

Reference38 articles.

1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

2. Annamalai M, Kaushik H, Selvaraj K (2016) Bioefficacy of Beauveria bassiana (Balsamo) Vuillemin and Lecanicillium lecanii Zimmerman against Thrips tabaci Lindeman. Proc Natl Acad Sci USA India Sect B Biol Sci 86:505–511

3. Aruthurs SP, Thomas MB (1999) Factors affecting horizontal transmission of entomopathogenic fungi in locusts and grasshoppers. In: Thomas MB, Kewards T (eds) Challenges in applied population biology, vol 53, pp 89–97

4. Azad M, Ahmad I, Mainuddin A (2020) Application of plant extracts for pest management in tea: a study on tea leaf’s thrips, Scirtothrips bispinosus. J Biosci 28:87–93

5. Babu A (2009) Eco-friendly insect pest management in tea in South India. Ins Pest Magmt Envl Safety 4(II):49–56

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3