Biological control of Golovinomyces cichoracearum, the causal pathogen of sunflower powdery mildew

Author:

Esawy Adel Ateyh,Elsharkawy Mohsen MohamedORCID,Omara Reda Ibrahim,Khalifa Mamdouh Abdel Fattah,Fadel Fawzya Mohamed,El-Naggar Magdy Mohamed

Abstract

Abstract Background Powdery mildew was found in most of the sunflower fields in Egypt, causing severe yellowing of the blade, petiole, stem and calyx, as well as a considerable defoliation during the summer season of 2018. Out of the fungal mycelium from infected leaves, collected from sunflower fields in the four Egyptian Governorates (Kafr El-Sheikh, Gharbia, Giza and El-Beheira), five isolates of powdery mildew pathogen were obtained and identified using morphological and molecular identification methods. Results In 2019 and 2020 seasons, five biocontrol agents (Bacillus subtilis, B. pumilus, Trichoderma harzianum, T. viride and T. koningii) were used to control powdery mildew disease on sunflower plants under field conditions compared with the fungicide (Vectra 10% SC). Treatments were significantly effective for controlling the powdery mildew disease relative to the control. The best treatment for reducing disease parameters (final disease severity (FDS%), area under disease progress curve (AUDPC) and efficacy) than the control was T. koningii. Foliar application of all the tested treatments improved plant height, head and stem diameters and seed yield in relation to untreated plants (control). The components (FDS%, AUDPC and efficacy) were extracted and described approximately 95.251% of the pooled data of seasons 2019 and 2020. In such pooled data, the principal components (PC1, PC2 and PC3) of all disease parameters, plant development parameters and yield components were recorded 76.305, 86.635 and 96.265% of the total variance, respectively. Conclusion A biological control agent, such as T. koningii, can be suggested for disease control based on the experimental findings.

Publisher

Springer Science and Business Media LLC

Subject

Insect Science,Plant Science,Agronomy and Crop Science,Ecology

Reference22 articles.

1. Abu Aly AAM, Omara RI, Abd El-Malik Nagwa I (2017) Evaluation of new sources of resistance to wheat stripe rust (Puccinia striiformis f. sp. tritici), under Egyptian field conditions. J Plant Prot Path Mansoura Univ 8(4):181–188

2. AOAC (1984) Official methods of analysis, 14th edn. Association of Official Analytical Chemists (AOAC), Arlington

3. Benitez T, Rincón AMM, Limón C, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

4. Chen RS, Chu C, Cheng CW, Chen WY, Tsay JG (2008) Differentiation of two powdery mildews of sunflower (Helianthus annuus) by a PCR-mediated method based on ITS sequences. Eur J Plant Pathol 121:1–8

5. Elsharkawy MM, El-Khateeb NM (2019) Antifungal activity and resistance induction against Sclerotium cepivorum by plant growth-promoting fungi in onion plants. Egypt J Biol Pest Control 29:68

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3