How many antiviral small interfering RNAs may be encoded by the mammalian genomes?

Author:

Zabolotneva Anastasia,Tkachev Victor,Filatov Felix,Buzdin Anton

Abstract

Abstract Background The discovery of RNA interference phenomenon (RNAi) and understanding of its mechanisms has revolutionized our views on many molecular processes in the living cell. Among the other, RNAi is involved in silencing of transposable elements and in inhibition of virus infection in various eukaryotic organisms. Recent experimental studies demonstrate few cases of viral replication suppression via complementary interactions between the mammalian small RNAs and viral transcripts. Presentation of the hypothesis It was found that >50% of the human genome is transcribed in different cell types and that these transcripts are mainly not associated with known protein coding genes, but represent non-coding RNAs of unknown functions. We propose a hypothesis that mammalian DNAs encode thousands RNA motifs that may serve for antiviral protection. We also presume that the evolutional success of some groups of genomic repeats and, in particular, of transposable elements (TEs) may be due to their ability to provide antiviral RNA motifs to the host organism. Intense genomic repeat propagation into the genome would inevitably cause bidirectional transcription of these sequences, and the resulting double-stranded RNAs may be recognized and processed by the RNA interference enzymatic machinery. Provided that these processed target motifs may be complementary to viral transcripts, fixation of the repeats into the host genome may be of a considerable benefit to the host. It fits with our bioinformatical data revealing thousands of 21-28 bp long motifs identical between human DNA and human-pathogenic adenoviral and herpesviral genomes. Many of these motifs are transcribed in human cells, and the transcribed part grows proportionally to their lengths. Many such motifs are included in human TEs. For example, one 23 nt-long motif that is a part of human abundant Alu retrotransposon, shares sequence identity with eight human adenoviral genomes. Testing the hypothesis This hypothesis could be tested on various mammalian species and viruses infecting mammalian cells. Implications of the hypothesis This hypothesis proposes that mammalian organisms may use their own genomes as sources of thousands of putative interfering RNA motifs that can be recruited to repress intracellular pathogens like proliferating viruses. Reviewers This article was reviewed by Eugene V. Koonin, Valerian V. Dolja and Yuri V. Shpakovski.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3