Author:
Burroughs A Maxwell,Balaji S,Iyer Lakshminarayan M,Aravind L
Abstract
Abstract
Background
Domains containing the β-grasp fold are utilized in a great diversity of physiological functions but their role, if any, in soluble or small molecule ligand recognition is poorly studied.
Results
Using sensitive sequence and structure similarity searches we identify a novel superfamily containing the β-grasp fold. They are found in a diverse set of proteins that include the animal vitamin B12 uptake proteins transcobalamin and intrinsic factor, the bacterial polysaccharide export proteins, the competence DNA receptor ComEA, the cob(I)alamin generating enzyme PduS and the Nqo1 subunit of the respiratory electron transport chain. We present evidence that members of this superfamily are likely to bind a range of soluble ligands, including B12. There are two major clades within this superfamily, namely the transcobalamin-like clade and the Nqo1-like clade. The former clade is typified by an insert of a β-hairpin after the helix of the β-grasp fold, whereas the latter clade is characterized by an insert between strands 4 and 5 of the core fold.
Conclusion
Members of both clades within this superfamily are predicted to interact with ligands in a similar spatial location, with their specific inserts playing a role in the process. Both clades are widely represented in bacteria suggesting that this superfamily was derived early in bacterial evolution. The animal lineage appears to have acquired the transcobalamin-like proteins from low GC Gram-positive bacteria, and this might be correlated with the emergence of the ability to utilize B12 produced by gut bacteria.
Reviewers
This article was reviewed by Andrei Osterman, Igor Zhulin, and Arcady Mushegian.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology
Reference51 articles.
1. Kraulis PJ: Similarity of protein G and ubiquitin. Science 1991,254(5031):581-582. 10.1126/science.1658931
2. Murzin AG: Familiar strangers. Nature 1992,360(6405):635. 10.1038/360635a0
3. Hershko A, Ciechanover A: The ubiquitin system. Annu Rev Biochem 1998, 67: 425-479. 10.1146/annurev.biochem.67.1.425
4. Wolf YI, Aravind L, Grishin NV, Koonin EV: Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 1999,9(8):689-710.
5. Chishti AH, Kim AC, Marfatia SM, Lutchman M, Hanspal M, Jindal H, Liu SC, Low PS, Rouleau GA, Mohandas N, Chasis JA, Conboy JG, Gascard P, Takakuwa Y, Huang SC, Benz EJ Jr., Bretscher A, Fehon RG, Gusella JF, Ramesh V, Solomon F, Marchesi VT, Tsukita S, Tsukita S, Hoover KB, et al.: The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 1998,23(8):281-282. 10.1016/S0968-0004(98)01237-7
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献