Author:
da Costa Lopes Andre M,João Karen G,Morais Ana Rita C,Bogel-Łukasik Ewa,Bogel-Łukasik Rafał
Abstract
Abstract
Lignocellulosic biomass composes a diversity of feedstock raw materials representing an abundant and renewable carbon source. In majority lignocellulose is constituted by carbohydrate macromolecules, namely cellulose and hemicellulose, and by lignin, a polyphenilpropanoid macromolecule. Between these biomacromolecules, there are several covalent and non-covalent interactions defining an intricate, complex and rigid structure of lignocellulose. The deconstruction of the lignocellulosic biomass makes these fractions susceptible for easier transformation to large number of commodities including energy, chemicals and material within the concept of biorefinery. Generally, the biomass pre-treatment depends on the final goal in the biomass processing. The recalcitrance of lignocellulose materials is the main limitation of its processing once the inherent costs are excessively high for the conventional pre-treatments. Furthermore, none of the currently known processes is highly selective and efficient for the satisfactory and versatile use, thus, new methodologies are still studied broadly. The ionic liquid technology on biomass processing is relatively recent and first studies were focused on the lignocellulosic biomass dissolution in different ionic liquids (ILs). The dissolution in IL drives to the structural changes in the regenerated biomass by reduction of cellulose crystallinity and lignin content contrasting to the original biomass. These findings provided ILs as tools to perform biomass pre-treatment and the advantageous use of their specific properties over the conventional pre-treatment processes. This review shows the critical outlook on the study of biomass dissolution and changes occurred in the biomass during this process as well as on the influence of several crucial parameters that govern the dissolution and further pre-treatment process. The review of currently known methods of biomass fractionation in IL and aqueous-IL mixtures is also discussed here and perspectives regarding these topics are given as well.
Publisher
Springer Science and Business Media LLC
Reference107 articles.
1. Kamm B, Kamm M, Gruber PR, Kromus S: Biorefineries-industrial processes and products. Biorefinery systems – an overview. 2008, Weinheim, Germany: Wiley-VCH Verlag GmbH, 1-40.
2. Harmsen P, Huijgen W, Bermudez L, Bakker R: Report/Wageningen UR, Food & Biobased Research;1184. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. 2010, Wageningen UR, Food & Biobased Research: Wageningen
3. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002, 66: 506-577. 10.1128/MMBR.66.3.506-577.2002.
4. Carels N: Biofuel’s Engineering process technology. The challenge of Bioenergies- an overview. 2011, Rijeka, Croatia: InTech, 23-64.
5. Stöcker M: Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed. 2008, 47: 9200-9211. 10.1002/anie.200801476.
Cited by
207 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献