Validation of the trauma mortality prediction scores from a Malaysian population

Author:

Tan Jih Huei123,Tan Henry Chor Lip123,Noh Nur Azlin Md1,Mohamad Yuzaidi1,Alwi Rizal Imran1

Affiliation:

1. General Surgery Department, Hospital Sultanah Aminah Johor Bahru, Malaysia

2. Pusat Perubatan Universiti Kebangsaan Malaysia Cheras, Malaysia

3. Clinical Research Centre Hospital Sultan Ismail Johor Bahru, Malaysia

Abstract

Abstract Background Well-known trauma mortality prediction scores such as New Injury Severity Score (NISS), Revised Trauma Score (RTS), and Trauma and Injury Severity Score (TRISS) have been externally validated from high-income countries with established trauma databases. However, these scores were never used in Malaysian population. In this current study, we attempted to validate these scoring systems using our regional trauma surgery database. Methods A retrospective analysis of the regional Malaysian Trauma Surgery Database was performed over a period of 3 years from May 2011 to April 2014. NISS, RTS, Major Trauma Outcome Study (MTOS)-TRISS, and National Trauma Database (NTrD)-TRISS scores were recorded and calculated. Individual scoring system’s performance in predicting trauma mortality was compared by calculating the area under the receiver operating characteristic (AUC) curve. Youden index and associated optimal cutoff values for each scoring system was calculated to predict mortality. The corresponding positive predictive value, negative predictive value, and accuracy of the cutoff values were calculated. Results A total of 2208 trauma patients (2004 blunt and 204 penetrating injuries) with mean age of 36 (SD = 16) years were included. There were 239 deaths with a corresponding mortality rate of 10.8%. The AUC calculated for the NISS, RTS, MTOS-TRISS, and NTrD-TRISS were 0.878, 0.802, 0.812, and 0.848, respectively. The NISS score with a cutoff value of 24, sensitivity of 86.6% and specificity of 74.3%, outperformed the rest (p < 0.001). Mortality was predicted by NISS with an overall accuracy of 75.6%; its positive predictive value was at 29.02% and negative predictive value at 97.86%. Conclusion Amongst the four scores, the NISS score is the best trauma mortality prediction model suited for a local Malaysian trauma population. Further validation with multicentre data in the country may require to ascertain the finding.

Publisher

Oxford University Press (OUP)

Subject

Critical Care and Intensive Care Medicine,Dermatology,Biomedical Engineering,Emergency Medicine,Immunology and Allergy,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3