Author:
Bernes Claes,Carpenter Stephen R,Gårdmark Anna,Larsson Per,Persson Lennart,Skov Christian,Van Donk Ellen
Abstract
Abstract
Background
In lakes that have become eutrophic due to sewage discharges or nutrient runoff from land, problems such as algal blooms and oxygen deficiency often persist even when nutrient supplies have been reduced. One reason is that phosphorus stored in the sediments can exchange with the water. There are indications that the high abundance of phytoplankton, turbid water and lack of submerged vegetation seen in many eutrophic lakes may represent a semi-stable state. For that reason, a shift back to more natural clear-water conditions could be difficult to achieve.
In some cases, though, temporary mitigation of eutrophication-related problems has been accomplished through biomanipulation: stocks of zooplanktivorous fish have been reduced by intensive fishing, leading to increased populations of phytoplankton-feeding zooplankton. Moreover, reduction of benthivorous fish may result in lower phosphorus fluxes from the sediments. An alternative to reducing the dominance of planktivores and benthivores by fishing is to stock lakes with piscivorous fish. These two approaches have often been used in combination.
The implementation of the EU Water Framework Directive has recently led to more stringent demands for measures against eutrophication, and a systematic review could clarify whether biomanipulation is efficient as a measure of that kind.
Methods
The review will examine primary field studies of how large-scale biomanipulation has affected water quality and community structure in eutrophic lakes or reservoirs in temperate regions. Such studies can be based on comparison between conditions before and after manipulation, on comparison between treated and non-treated water bodies, or both. Relevant outcomes include Secchi depth, concentrations of oxygen, nutrients, suspended solids and chlorophyll, abundance and composition of phytoplankton, zooplankton and fish, and coverage of submerged macrophytes.
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Pollution,Ecology
Reference24 articles.
1. Schindler DW: Eutrophication and recovery in experimental lakes: implications for lake management. Science 1974, 184: 897–899. 10.1126/science.184.4139.897
2. Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K: The structuring role of submerged macrophytes in lakes. In Ecological Studies, vol. 131. Edited by: Caldwell MM. New York: Springer; 1998.
3. Brönmark C, Hansson L-A: The biology of lakes and ponds. 2nd edition. Oxford; 2005.
4. Søndergaard M, Jensen JP, Jeppesen E: Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 2003, 506–509: 135–145.
5. Scheffer M, Hosper SH, Meijer M-L, Moss B, Jeppesen E: Alternative equilibria in shallow lakes. Tree 1993, 8: 275–279.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献