Author:
Labbeiki Ghazal,Attar Hossein,Heydarinasab Amir,Sorkhabadi Sayed,Rashidi Alimorad
Abstract
Abstract
Background
Magnetite nanoparticles have widespread biomedical applications. In the aerobic bioprocesses, oxygen is a limiting factor for the microbial metabolic rate; hence a high availability of oxygen in the medium is crucial for high fermentation productivity. This study aimed to examine the effect of using magnetite nanoparticles on oxygen transfer rate in erythromycin fermentation culture.
Methods
Magnetite nanoparticles were synthetized through co-precipitation method. After observing the enhanced oxygen transfer rate in deionized water enriched with magnetite nanoparticles, these nanoparticles were used in the media of by Saccharopolyspora erythraea growth to explore their impact on erythromycin fermentation titer. Treatments comprised different concentrations of magnetite nanoparticles, (0, 0.005, 0.02 v/v).
Results
In the medium containing 0.02 v/v magnetite nanoparticles, KLa was determined to be 1.89 time higher than that in magnetite nanoparticle-free broth. An improved 2.25 time higher erythromycin titer was obtained in presence of 0.02 v/v nanoparticles.
Conclusions
Our results, demonstrate the potential of magnetite nanoparticles for enhancing the productivity of aerobic pharmaceutical bioprocesses.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Reference30 articles.
1. Garcia-Ochoa F, Gomez E, Santos VE, Merchuk JC: Oxygen uptake rate in microbial processes. Biochem Eng J. 2010, 49: 289-307. 10.1016/j.bej.2010.01.011.
2. Fadavi A, Chisti Y: Gas-Liquid mass transfer in a novel forced circulation loop reactor. Chem Eng J. 2005, 112: 73-80. 10.1016/j.cej.2005.06.009.
3. Moutafchieva D, Popova D, Dimitrova M, Tchaoushev S: Experimental determination of the volumetric mass transfer coefficient. J Chem Technol Metallurgy. 2013, 48 (4): 351-356.
4. Olle B, Bucak S, Holmes TC, Bromberg L, Hatton TA, Wang DIC: Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles. Ind Eng Chem Res. 2006, 45: 4355-4363. 10.1021/ie051348b.
5. Nagy E, Feczko T, Koroknai B: Enhancement of oxygen mass transfer rate in the presence of nanosized particles. Chem Eng Sci. 2007, 62: 7391-7398. 10.1016/j.ces.2007.08.064.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献