Author:
Dessein Anne-Frédérique,Fontaine Monique,Andresen Brage S,Gregersen Niels,Brivet Michèle,Rabier Daniel,Napuri-Gouel Silvia,Dobbelaere Dries,Mention-Mulliez Karine,Martin-Ponthieu Annie,Briand Gilbert,Millington David S,Vianey-Saban Christine,Wanders Ronald JA,Vamecq Joseph
Abstract
Abstract
A female patient, with normal familial history, developed at the age of 30 months an episode of diarrhoea, vomiting and lethargy which resolved spontaneously. At the age of 3 years, the patient re-iterated vomiting, was sub-febrile and hypoglycemic, fell into coma, developed seizures and sequels involving right hemi-body. Urinary excretion of hexanoylglycine and suberylglycine was low during this metabolic decompensation. A study of pre- and post-prandial blood glucose and ketones over a period of 24 hours showed a normal glycaemic cycle but a failure to form ketones after 12 hours fasting, suggesting a mitochondrial β-oxidation defect. Total blood carnitine was lowered with unesterified carnitine being half of the lowest control value. A diagnosis of mild MCAD deficiency (MCADD) was based on rates of 1-14C-octanoate and 9, 10-3H-myristate oxidation and of octanoyl-CoA dehydrogenase being reduced to 25% of control values. Other mitochondrial fatty acid oxidation proteins were functionally normal. De novo acylcarnitine synthesis in whole blood samples incubated with deuterated palmitate was also typical of MCADD. Genetic studies showed that the patient was compound heterozygous with a sequence variation in both of the two ACADM alleles; one had the common c.985A>G mutation and the other had a novel c.145C>G mutation. This is the first report for the ACADM gene c.145C>G mutation: it is located in exon 3 and causes a replacement of glutamine to glutamate at position 24 of the mature protein (Q24E). Associated with heterozygosity for c.985A>G mutation, this mutation is responsible for a mild MCADD phenotype along with a clinical story corroborating the emerging literature view that patients with genotypes representing mild MCADD (high residual enzyme activity and low urinary levels of glycine conjugates), similar to some of the mild MCADDs detected by MS/MS newborn screening, may be at risk for disease presentation.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Genetics (clinical),General Medicine
Reference45 articles.
1. Gregersen N, Bross P, Andresen BS: Genetic defects in fatty acid beta-oxidation and acyl-CoA dehydrogenases. Molecular pathogenesis and genotype-phenotype relationships. Eur J Biochem. 2004, 271: 470-482. 10.1046/j.1432-1033.2003.03949.x.
2. Roe CR, Ding JH: Mitochondrial fatty acid oxidation disorders. The metabolic and molecular bases of inherited disease. Edited by: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B. McGraw-Hill, New York, 2005, 8: 2297-2326.
3. Gregersen N, Andresen BS, Pedersen CB, Olsen RK, Corydon TJ, Bross P: Mitochondrial fatty acid oxidation defects--remaining challenges. J Inherit Metab Dis. 2008, 31: 643-657. 10.1007/s10545-008-0990-y.
4. Kompare M, Rizzo WB: Mitochondrial fatty-acid oxidation disorders. Semin Pediatr Neurol. 2008, 15: 140-149. 10.1016/j.spen.2008.05.008.
5. Gregersen N, Lauritzen R, Rasmussen K: Suberylglycine excretion in the urine from a patient with dicarboxylic aciduria. Clin Chim Acta. 1976, 70: 417-425. 10.1016/0009-8981(76)90355-7.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献