Author:
Bergamin Natascha,Dardis Andrea,Beltrami Antonio,Cesselli Daniela,Rigo Silvia,Zampieri Stefania,Domenis Rossana,Bembi Bruno,Beltrami Carlo Alberto
Abstract
Abstract
Background
Niemann Pick C (NPC) disease is a neurovisceral lysosomal storage disorder due to mutations in NPC1 or NPC2 genes, characterized by the accumulation of endocytosed unesterified cholesterol, gangliosides and other lipids within the lysosomes/late endosomes. Even if the neurodegeneration is the main feature of the disease, the analysis of the molecular pathways linking the lipid accumulation and cellular damage in the brain has been challenging due to the limited availability of human neuronal models.
Objective
The aim of this study was to develop a human neuronal model of NPC disease by inducing neuronal differentiation of multipotent adult stem cells (MASC) isolated from NPC patients.
Methods
Stem cells were isolated from 3 NPC patients and 3 controls both from skin biopsies and previously established skin fibroblast cultures. Cells were induced to differentiate along a neuronal fate adapting methods previously described by Beltrami et al, 2007. The surface immunophenotype of stem cells was analyzed by FACS. Stem cell and neuronal markers expression were evaluated by immunofluorescence. Intracellular accumulation of cholesterol and gangliosides were assessed by filipin staining and immunofluorescence, respectively. A morphometric analysis was performed using a Neurite outgrowth image program.
Results
After 3 passages in selective medium, MASC isolated either from skin biopsies or previously established skin fibroblast cultures displayed an antigenic pattern characteristic of mesenchymal stem cells and expressed the stem cell markers Oct-4, Nanog, Sox-2 and nestin. A massive lysosomal accumulation of cholesterol was observed only in cells isolated from NPC patients. After the induction of neural differentiation, remarkable morphologic changes were observed and cells became positive to markers of the neuronal lineage NeuN and MAP2. Differentiated cells from NPC patients displayed characteristic features of NPC disease, they showed intracellular accumulation of unesterified cholesterol and GM2 ganglioside and presented morphological differences with respect to cells derived from healthy donors.
In conclusion, we generated a human neuronal model of NPC disease through the induction of differentiation of stem cells obtained from patient’s easily accessible sources. The strategy described here may be applied to easily generate human neuronal models of other neurodegenerative diseases.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Genetics(clinical),General Medicine
Reference33 articles.
1. Patterson M, Vanier MT, Suzuki K, Morris ED, Cartsea EB, Neufeld EJ, Blanchette-Mackie PG, Pentchev : Niemann Pick disease type C: a lipid trafficking disorder. The metabolic and molecular basis of inherited diseases, Volume 3. Edited by: Scriver CR, Beaudet AL, Sly WS, Valle D. 2001, New York: Mc Graw-Hill, 611-634. VII
2. Vanier MT, Millat G: Niemann-Pick disease type C. Clin Genet. 2003, 64: 269-281. 10.1034/j.1399-0004.2003.00147.x.
3. Carstea ED, Polymeropoulos MH, Parker CC, Detera-Wadleigh SD, O'Neill RR, Patterson MC, Goldin E, Xiao H, Straub RE, Vanier MT, Roscoe OB, Pentchev PG: Linkage of Niemann-Pick disease type C to human chromosome 18. Proc Natl Acad Sci U S A. 1993, 90: 2002-2004. 10.1073/pnas.90.5.2002.
4. Vanier MT, Duthel S, Rodriguez-Lafrasse C, Pentchev P, Carstea ED: Genetic heterogeneity in Niemann-Pick C disease: a study using somatic cell hybridization and linkage analysis. Am J Hum Genet. 1996, 58: 118-125.
5. Davies JP, Ioannou YA: Topological analysis of Niemann-Pick C1 protein reveals that the membrane orientation of the putative sterol-sensing domain is identical to those of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element binding protein cleavage-activating protein. J Biol Chem. 2000, 275: 24367-24374. 10.1074/jbc.M002184200.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献