Author:
Romdhane Lilia,Kefi Rym,Azaiez Hela,Halim Nizar Ben,Dellagi Koussay,Abdelhak Sonia
Abstract
Abstract
Background
Tunisia is a North African country of 10 million inhabitants. The native background population is Berber. However, throughout its history, Tunisia has been the site of invasions and migratory waves of allogenic populations and ethnic groups such as Phoenicians, Romans, Vandals, Arabs, Ottomans and French. Like neighbouring and Middle Eastern countries, the Tunisian population shows a relatively high rate of consanguinity and endogamy that favor expression of recessive genetic disorders at relatively high rates. Many factors could contribute to the recurrence of monogenic morbid trait expression. Among them, founder mutations that arise in one ancestral individual and diffuse through generations in isolated communities.
Method
We report here on founder mutations in the Tunisian population by a systematic review of all available data from PubMed, other sources of the scientific literature as well as unpublished data from our research laboratory.
Results
We identified two different classes of founder mutations. The first includes founder mutations so far reported only among Tunisians that are responsible for 30 genetic diseases. The second group represents founder haplotypes described in 51 inherited conditions that occur among Tunisians and are also shared with other North African and Middle Eastern countries. Several heavily disabilitating diseases are caused by recessive founder mutations. They include, among others, neuromuscular diseases such as congenital muscular dystrophy and spastic paraglegia and also severe genodermatoses such as dystrophic epidermolysis bullosa and xeroderma pigmentosa.
Conclusion
This report provides informations on founder mutations for 73 genetic diseases either specific to Tunisians or shared by other populations. Taking into account the relatively high number and frequency of genetic diseases in the region and the limited resources, screening for these founder mutations should provide a rapid and cost effective tool for molecular diagnosis. Indeed, our report should help designing appropriate measures for carrier screening, better evaluation of diseases burden and setting up of preventive measures at the regional level.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Genetics (clinical),General Medicine
Reference100 articles.
1. Romdhane L, Abdelhak S: Genetic diseases in the Tunisian population. Am J Med Genet A. 2011, 155: 238-267. 10.1002/ajmg.a.33771.
2. Teebi AS, El-Shanti HI: Consanguinity: implications for practice, research, and policy. Lancet. 2006, 367: 970-971. 10.1016/S0140-6736(06)68406-7.
3. Bridge PJ: The Calculation of Genetic Risks – Worked examples in DNA diagnostics 2nd edition. Johns Hopkins University Press, Baltimore; 1997.
4. Zeegers MPA, van Poppel F, Vlietinck R, Spruijt L, Ostrer H: Founder mutations among the Dutch. Eur J Hum Genet. 2004, 12: 591-600. 10.1038/sj.ejhg.5201151.
5. Pastinen T, Perola M, Ignatius J, Sabatti C, Tainola P, Levander M, Syvänen AC, Peltonen L: Dissecting a population genome for targeted screening of disease mutations. Hum Mol Genet. 2001, 10: 2961-2972. 10.1093/hmg/10.26.2961.
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献