Clinical-functional correlation with brain volumetry in severe perinatal asphyxia: a case report

Author:

Velasquez-Minoli Juan Pablo,Cardona-Ramirez Natalia,Garcia-Arias Hernan Felipe,Restrepo-Restrepo Feliza,Porras-Hurtado Gloria Liliana

Abstract

Abstract Background Hypoxic-ischemic encephalopathy (HIE) appears in neurological conditions where some brain areas are likely to be injured, such as deep grey matter, basal ganglia area, and white matter subcortical periventricular áreas. Moreover, modeling these brain areas in a newborn is challenging due to significant variability in the intensities associated with HIE conditions. This paper aims to evaluate functional measurements and 3D machine learning models of a given HIE case by correlating the affected brain areas with the pathophysiology and clinical neurodevelopmental. Case presentation A comprehensive analysis of a term infant with perinatal asphyxia using longitudinal 3D brain information from Machine Learning Models is presented. The clinical analysis revealed the perinatal asphyxia diagnosis with APGAR <5 at 5 and 10 minutes, umbilical arterial pH of 7.0 BE of -21.2 mmol / L), neonatal seizures, and invasive ventilation mechanics. Therapeutic interventions: physical, occupational, and language neurodevelopmental therapies. Epilepsy treatment: vagus nerve stimulation, levetiracetam, and phenobarbital. Furthermore, the 3D analysis showed how the volume decreases due to age, exhibiting an increasing asymmetry between hemispheres. The results of the basal ganglia area showed that thalamus asymmetry, caudate, and putamen increase over time while globus pallidus decreases. Clinical outcomes: spastic cerebral palsy, microcephaly, treatment-refractory epilepsy. Conclusions Slight changes in the basal ganglia and cerebellum require 3D volumetry for detection, as standard MRI examinations cannot fully reveal their complex shape variations. Quantifying these subtle neurodevelopmental changes helps in understanding their clinical implications. Besides, neurophysiological evaluations can boost neuroplasticity in children with neurological sequelae by stimulating new neuronal connections.

Funder

Departamento Administrativo de Ciencia, Tecnología e Innovación

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3