Diagnostic accuracy of a dynamically increased red blood cell distribution width in very low birth weight infants with serious bacterial infection

Author:

Guo Bin-Fang,Sun Su-Zhen

Abstract

Abstract Objective Serious bacterial infection (SBI) remains an important cause of morbidity and mortality in preterm infants. The objective of this study was to evaluate the dynamically increased value of the red cell distribution width (RDW) in the diagnosis of SBI. Methods This retrospective study enrolled 334 preterm infants with birth weight less than 1500 g. The initial RDW and the maximum value of RDW during hospitalization were extracted from the MIMIC-III database (version 1.4). Infants were categorized into four groups according to baseline RDW value and ΔRDW (ΔRDW = RDW at maximum- RDW at baseline). Logistic regression analysis was used to assess the risk of developing SBI in each group. A receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic value of RDW at baseline alone, ΔRDW alone, and in combination. Results Infants with increased RDW at baseline (> 17%) and ΔRDW > 2% exhibited the highest risk of developing SBI, whereas the patients with normal RDW level at baseline (≤ 17%) and ΔRDW≤2% (the reference group) had the lowest risk. This association remained unaltered even after adjustment in multivariable models. Basing on ROC curve analysis, the area under the curve predicted by the combination of RDW at baseline and ΔRDW for SBI was 0.81 (95% CI, 0.76–0.87). Sensitivity and specificity were 78.16 and 72.47% respectively. Conclusions We observed that combination of elevated RDW at baseline and dynamic increases during hospitalization is significantly associated with SBI. Therefore, that combination could be a promising independent diagnostic indicator of SBI in newborns.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3