Simulating the diameter growth responses of Larix gmelini Rupr. and Betula platyphylla Suk. to biotic and abiotic factors in secondary forests in Northeast China

Author:

Wang Tao,Xie Longfei,Miao Zheng,Dong LihuORCID,Hao Yuanshuo,Ma Aiyun,Li Fengri

Abstract

Abstract Key message The diameter growth of Dahurian larch (Larix gmelini Rupr.) and white birch (Betula platyphylla Suk.) species in secondary forest of Northeast China was not only influenced by biological factors such as tree size and stand characteristics, but also significantly affected by topographic and climatic factors such as temperature and precipitation. It is necessary to consider the abiotic factors in simulating the diameter growth. Context Climate change, such as global temperature rise, increased frequency of extreme weather events, and rising sea levels, has put forest ecosystems in an unstable state and has an impact on species composition, growth harvest, productivity and other functions of forests. And this impact varies in climate scenarios, regions and forest types. Aims To gain a comprehensive understanding of the adaptation for key species to their environment in secondary forests in Northeast China, the diameter growth responses of Dahurian larch and white birch to biotic and abiotic factors were simulated to assess the effects of climate on diameter growth. Methods China’s National Forest Continuous Inventory (NFCI) data from 2005 to 2015 were used to develop linear mixed-effects diameter growth models with plot-level random effects, and leave-one-out cross-validation was applied to evaluate the developed models. At the beginning of modeling, correlation analysis and best-subset regression were used to analyze the correlation between the diameter increment and the biotic and abiotic factors. Results (i) Sorting the categories of predictors in descending order based on the relative importance of the significant predictors, diameter growth of Dahurian larch was affected by competition, tree size, topographic conditions, stand attributes, diversity index, and climate factors, while the white birch species was affected by competition, tree size, stand attributes, climate factors, diversity index, and topographic conditions; (ii) the plot-level mixed-effects model, which achieved better fit and prediction performance than did basic linear models of individual-tree diameter growth in the cases of prediction calibration, was preferable for modeling individual-tree diameter growth; (iii) the prediction accuracy of the mixed-effects model increased gradually with increasing size of calibration sample, and the best sampling strategy was the use of nine random trees to calibrate and make predictions with the mixed-effects model for the larch and birch species; (iv) Dahurian larch was dominant in terms of interspecific competition, and the growth of this species was enhanced when it was grown with the birch. Conclusion In addition to biotic factors such as tree size and stand characteristics, the impact of climate on the growth of Dahurian larch and white birch should be considered in future management policies.

Funder

Joint Funds for Regional Innovation and Development of the National Natural Science Foundation of China

Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Heilongjiang Touyan Innovation Team Program

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3